-
-
0掩膜版与光罩的区别与应用 掩膜版和光罩是半导体制造过程中的两个重要概念,它们虽然都扮演着不可或缺的角色,但存在一些区别。 掩膜版和光罩的概念及作用 掩膜版:用于制作芯片的模板,通常由透明或半透明的玻璃或石英材料制成。通过控制光的传输和反射,掩膜版可以将设计图案转移到硅片上,并形成芯片上的各种结构。 光罩:制作掩膜版的工具,它是一个透明的平板,上面有一个半导体芯片的图案。通过使用光罩,可以将芯片的图案转
-
0等离子清洗机的基本结构大致相同,一般由真空室、真空泵、高频电源、电极、气体导入系统、工件传送系统和控制系统等部分组成。可以通过选用不同种类的气体和调整装置的特征参数等方法满足不同的清洗用途和要求,使工艺流程实现最佳化。 等离子体清洗方式主要分为物理清洗和化学清洗。物理清洗的原理是,由射频电源电离气体产生等离子体具有很高的能量等离子体通过物理作用轰击金属表面,使金属表面的污染物从金属表面脱落。化学清洗的原
-
0微流控芯片系统由于分析速度快、试剂消耗少、便于集成和高通量分析等优点而被广泛应用于生化分析等各领域.过去20年中,伴随材料科学的发展以及利用微加工技术操纵小尺度微流体的实现,微流控芯片技术取得了巨大的进步,目前,基于细胞、组织培养的微流控芯片系统已应用到高通量筛选、药物开发及毒性测试等领域,未来还可将其应用到再生医学等相关技术中. 水凝胶是一种三维亲水性网络状聚合物,因其具有高含水量及灵活多变的柔性结构
-
0微流控(MFs)设备的设计和开发的最新进展使得将传统的生物化学实验室小型化为微通道网络系统成为可能,该系统已成为一种高效且低成本的工具。生物医学微型设备包括由许多微米和纳米尺寸的集成设备组成的集成结构,从粒子操纵到传感的许多过程都在平台中进行。微流控在生物医学科学中最有前景的应用之一是疾病诊断,包括癌症诊断和传染病诊断。然而,微制造的进一步发展是在疾病建模中使用微流控设备。这篇文章讨论了微流控系统的生物
-
0键合PDMS和硅片的过程涉及几个关键步骤和注意事项,以确保键合质量和稳定性。以下是基于提供的搜索结果的详细解释。 等离子处理工艺的作用 等离子处理工艺在PDMS和硅片键合中起着至关重要的作用。它可以通过活化PDMS聚合物和基片(玻璃片、硅片)的表面,改变材料表面的化学性质,提高表面能,增强PDMS与玻片或硅片之间的亲和力,从而有利于键合的进行。此外,等离子处理还能去除PDMS芯片、玻片和硅片表面的杂质,如灰尘、有机物残留等,
-
0微流控芯片的概述 微流控芯片是一种集成了微管道网络的微型全分析系统,它能够在芯片上执行复杂的实验和分析过程。这种技术最初是由瑞士Ciba2Geigy公司的Manz与Widmer在1990年提出,其核心特点是将实验流程微型化,并通过微机电加工技术在芯片上构建微流路系统。 CNC加工技术的基本原理 CNC(计算机数控)加工技术是一种利用计算机控制机床进行零件加工的技术。它的基本工作原理是将CAD软件中绘制的零件图纸导入到CNC加工机床的控制系统中,由控
-
0在正性光刻过程中,掩膜版(Photomask)作为图形转移的关键工具,其性能直接影响到最终图形的精确度和质量。以下是正性光刻对掩膜版的主要要求: 图案准确性 在正性光刻中,掩膜版上的图案需要被准确地复制到光刻胶上。这意味着掩膜版上的每一个细节都必须清晰且无缺陷,因为任何细微的错误都会在后续的工艺步骤中被放大,影响最终产品的性能。 材料选择 掩膜版通常由高纯度的石英玻璃制成,因为石英玻璃具有优异的化学稳定性和光学透
-
0玻璃微流控芯片作为一种重要的微流控器件,具有许多独特的特点,使其在各种微流控应用中得到广泛应用。以下是玻璃微流控芯片的一些主要特点: 1. 优秀的光学透明度 玻璃微流控芯片具有极高的光学透明度,这使得它们非常适合于需要光学观察和分析的应用,如荧光显微镜观察、激光诱导荧光(LIF)检测等。 2. 优异的耐高压性 玻璃微流控芯片能够承受较高的压力,这使得它们适用于需要高压操作的实验,如高压液相色谱(HPLC)等。 3. 生物相容
-
01.3细胞培养装置及细胞培养 将加工完成的芯片与温度控制系统、进样系统、信号检测系统等整合成一个完整的细胞培养微系统,并在此微系统内培养PIEC。通过微量注射泵供给培养液,通过荧光显微镜完成信号检测。 2.1.1 ITO玻璃的腐蚀 在传统的玻璃微流控芯片制作工艺中,通常采用石英玻璃作为基质材料,但其价格较为昂贵,制作工艺复杂,且刻蚀速率较慢,需要长时间的刻蚀才能获得足够的深度。为此,通常需要在玻璃表面沉积一层薄膜材料作为刻蚀掩
-
0近几年来,微全分析系统技术日益受到人们关注,广泛应用于生化分析和细胞学研究领域。μTAS技术应用于细胞学研究的一个重要发展方向是开发细胞培养微系统,用于细胞迁移,细胞分化贝药物筛选等。与常规细胞体外培养技术相比,利用细胞培养微系统培养细胞能够较好地模拟细胞体内生长的微环境。然而,在设计细胞培养芯片时,必须考虑芯片材料的生物兼容性、培养液流动导致的机械力对细胞的影响和有效成分的传递输送等因素其中,如何通过简单快速
-
0微流控芯片是利用微加工技术将微小通道和微结构加工在微米尺度的材料表面上,以实现微流体的控制和操作。常见的微流控芯片聚合物(塑料)材料包括COC环烯烃聚合物、PMMA、PC、PE、PP、PVC、PS、PC、PF、EP、ABS、PA等。 PMMA(聚甲基丙烯酸甲酯) 聚甲基丙烯酸甲酯(Poly(methyl methacrylate),简称PMMA),又称为亚克力、有机玻璃或压克力,是一种透明、热塑性塑料,具有高透明度、低价格和易于机械加工的特点,常作为玻璃的替代材料。 密度:PMMA的密度大约在1.15-
-
0微流控SU8掩膜版的制作是一个复杂的工艺过程,涉及到多个步骤。以下是详细的制作流程: 1. 掩膜版设计 原理图设计:根据微流控芯片的设计要求,进行原理图设计,分析元件需接线方向,设计需要在掩膜版上印制的图案。 版图生成:使用专业的CAD软件生成掩膜版的版图,确保图案的精确性和完整性。 2. 掩膜版制作 基板准备:选择高洁净度、高平整度的石英玻璃作为基板。 镀层:在石英玻璃上镀上一层铬,铬上再覆盖一层防反射物质,最上面涂覆
-
0高通量生物分析技术是指同时对一个样品中的多个指标或者对多个样品中的一个指标同步进行并行分析,以在最短的时间内获得最多的生物信息的新型分析技术。微流控芯片是高通量生物分析技术的一种,主要包括PCR芯片、流式芯片、毛细管电泳芯片、微电子芯片、色谱芯片及各类样品制备芯片等,目前已广泛应用于生物医学领域中。美迪西生物分析部提供全面符合FDA/CFDA GLP的生物分析服务,以支持小分子药物、大分子药物、生物技术药物、疫苗和生
-
0微流控指的是使用微管道 (尺寸为数十到数百微米)处理或操纵微小流体(体积为微升、纳升甚至阿升)的系统所涉及的科学和技术,是一门涉及化学、流体物理、微电子、新材料、生物学和生物医学工程的新兴交叉学科。 微流控芯片,又称芯片实验室,是一种以在微米尺度空间对流体进行操控为主要特征的科学技术。微流控芯片技术自问世以来,在生物医学、化学分析、环境监测、药物筛选等领域得到了广泛应用,并展现出巨大的发展潜力。例如,在生
-
0微流控芯片是一种在微尺度下进行流体操控的装置,广泛应用于生物、化学、医学等领域。在微流控芯片的制造过程中,键合技术是至关重要的一步,它决定了芯片的密封性和功能性。热键合和表面改性键合是两种常见的键合工艺,它们各有优缺点,适用于不同的材料和应用场景。 热键合工艺 热键合是通过加热使材料软化,然后在压力作用下将两个表面紧密贴合在一起,形成密封的微通道。这种工艺通常适用于聚合物材料,如聚甲基丙烯酸甲酯(PMMA
-
0在微电子和半导体制造领域,掩膜版是一个关键的工具,用于精确地转移图形到待加工的材料上,如集成电路(IC)芯片。铬版掩膜和光刻掩膜都是掩膜版的一种,但它们之间存在一些区别,主要体现在材料、用途和工艺流程上。 材料与构成 铬版掩膜: 材料:铬版掩膜通常指的是在透明基板(如玻璃或石英)上镀有一层铬的掩膜版。铬层因其高不透光性、硬度和化学稳定性而被选为不透光区域的材料。 构成:由基板(如玻璃或石英)、铬层和可能的
-
0玻璃微流控芯片是一种集成了微流体学、生物化学及微型制造技术的前沿科学,它越来越多地应用于疾病诊断、化学分析、生物工程等领域。 玻璃微流控芯片的材料和制造 玻璃微流控芯片的材料选择包括聚二甲基硅氧烷(PDMS)、玻璃或PDMS板、硅、热塑性塑料(如聚甲基丙烯酸甲酯(PMMA)(又名丙烯酸或有机玻璃)、聚碳酸酯(PC)(又名Lexan))、环状烯烃(如COC或COP)。其中,通道通常铸造在PDMS片材的表面上,并由玻璃或PDMS板密封。微流控芯片也可由
-
0光刻掩膜版的制作是一个复杂且精密的过程,涉及到多个步骤和技术。以下是小编整理的光刻掩膜版制作流程: 1. 设计与准备 在开始制作光刻掩膜版之前,首先需要根据电路设计制作出掩模的版图。这个过程通常使用计算机辅助设计(CAD)软件来实现。设计好后,会生成一个掩模图案的数据文件。 2. 选择基板 选择适当的基板材料是制作光刻掩膜的重要环节。常用的基板材料是石英或玻璃。基板应该具有高透明度、低膨胀系数、高抗拉强度等特性。 3.
-
0光刻工艺的基本要求包括图形完整、尺寸准确、套准对准且套准精度高、表面干净,并具有一定的工艺宽容度。 光刻是一种图形复印和化学腐蚀相结合的精密表面加工技术,其质量的基本要求涵盖了多个方面以确保芯片制造的精确性和可靠性。 具体来说: 图形完整、尺寸准确:这是指光刻过程中,需要确保被转移的图形完整无损,并且尺寸符合设计要求,这是保证芯片功能正常的基础。 套准对准,套准精度高:这一要求确保了多个光刻层之间的精
-
0光刻掩模是光的一种掩蔽模片,其作用有类似于照相的通过它,可以使它“底下“的光剂部分成光,难溶于有机药品,一部分不感光,易溶于有机药品,以而制得选择扩散所需的窗口和互速所需的图案。 掩膜版有两种:一种是在涂有普通乳胶的照相干版上,依据掩模原图,用照相方法制成的;另一种是在镀有一薄层金属(通常为铬)的玻璃版上,用光刻法在金属层上刻蚀出所需图形而制成的。为了使每块硅片能同时制作几十至几千个管芯或电路,掩
-
0
-
0微流控芯片相关技术 1、微液滴技术 微液滴操控包括微液滴生成和微液滴驱动,按生成方式可以将操控微液滴的方法分为两大类。一类是被动法,即通过对微通道结构的特别设计使液流局部产生速度梯度来对微液滴进行操控,主要为多相流法问。该法的主要特点是可以快速批量生成微液滴;另一类是主动法,即通过电场力、热能量等外力使液流局部产生能量梯度来对微液滴进行操控,主要包括电润湿法口、介电电泳法和热毛细管法。该法的主要特点是
-
0
-
0
-
0谁可以推荐一个粘度50-80mPas,膜厚2um的正性光刻胶?
-
1
-
1我们在使用光刻胶的时候往往关注的重点是光刻胶的性能,但是有时候我们会忽略光刻胶的保存和寿命问题,其实这个问题应该在我们购买光刻胶前就应该提出并规划好。并且,在光刻过程中如果发现有异常情况发生,我们通常要考虑光刻胶是否过期失效了。接下来我们将介绍一下光刻胶保存和老化失效的基础知识。 光刻胶的保存 光刻胶对光敏感,在光照或高温条件下其性能会发生变化。光刻胶在储存过程中会老化,因此通常保存在防光的棕色玻璃
-
0微流控液滴芯片是微流控芯片的一种重要模式,液滴的核心功能是微反应器。微流控芯片液滴通量极高,体积极小,它当然应该在以反应为基础的材料筛选和材料合成领域找到应用出口。 对不同材料作高通量筛选是微流控液滴芯片应用的一个重点领域。比如,对基于小分子库的新药筛选而言,体量大到百万级别,如果采用常规方法筛选,成本极高,耗时极长,作为已知的最小微反应器的微流控液滴芯片, 应是解决这一类问题理想的替代技术。 一般而言,液滴的直径
-
01. 基于微流控液滴封装技术的高通量筛选 高通量筛选是一种在短时间内分析大量化合物库的方法,例如,每天进行104到105次测试。通过借助机器人和多孔板,高通量筛选已被广泛应用于发现药物、测试毒性和分析抗体的亲和力。微流控液滴技术可以产生大量,反应条件均一的单分散液滴,特别适合于提高高通量筛选。同时,由于微液滴的反应体积在纳升和皮升级,极大减少了试剂消耗。液滴的产生频率可高达10kHz,满足每天高达1亿反应条件的高通量
-
0光刻胶主要通过旋涂的方式进行涂布的(又称为“甩胶”),对于薄胶,最佳的旋涂转速为2000~4000rpm,对于相对胶厚的胶,最佳旋涂转速为250~2000rpm,匀胶机的转速通常可以达到9000rpm,在某些情况下,还可以使用1000~200rpm较慢的转速来获得特定较厚的胶层。但是这种情况下,胶膜的质量会下降。并且可能会在晶圆的边缘形成大量的边缘胶珠,可以通过旋涂获得30~200um的胶厚(取决于光刻胶的类型),也可以使用自流平的方法获得高达1mm后的厚胶膜。 需
-
0摘要:近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中 的最新研究进展,并展望了其在未来的发展趋势与挑战。该综述包括微流控纸芯片在环境检测中的优势与制 造方 法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标
-
0微流控技术具有微量、高效、高通量、微型化、集成化、自动化的特点,为实现现场化、低成本的临床生化分析提供了一条可行的技术途径。 针对于目前临床生化分析中复杂流体操控的难点,该文依据系统中采用驱动和控制方式的不同,对各种基于微流控技术的临床生化分析系统进行了分类介绍。 临床生化分析是基于分光光度法对血液、尿液等体液中血糖血脂、肝功、肾功、心肌酶谱等几十项生化指标进行检验的方法。 它是临床体外诊断最为常用的
-
0早期使用的生成液滴方法主要有高速搅拌法、逐层组装技术、膜乳化法和界面聚合法等, 均可生成微纳米尺寸的液滴。 高速搅拌法工序少、操作简单、成本低; 逐层组装技术通 用性和可控性强, 可用于构建药物控释系统, 灵活控制递药载体结构; 膜乳化法制备的高分子微球广泛应用于化妆品、医药、化工、电子等领域; 界面聚合法设备简单, 不要求严格的聚合物量比, 主要应用于新型材料的制备。 这些方法至今仍在其各自适合的领域发挥作用, 但在液滴稳
-
0纤维纺丝化学(FSC)因其高比表面积、高效的传热传质和更高的反应速率而成为一种很有前途的微反应平台。FSC策略采用纺丝纤维作为微反应器,减少挥发性有机化合物(VOCs)的排放,实现微/纳米级纤维的设计和纳米材料的合成。在这篇综述中,我们重点介绍了FSC在制备机制和技术优势方面的最新进展。强调了各种FSC策略,包括微流控纺丝、电微流控纺丝(EMS)和微流控吹纺丝(MBS)。特别介绍了FSC工艺中微流控芯片的调控。此外,还总结了FSC策略
-
0引 言 自然界中存在很多天然的各向异性表面, 例如具有微米级乳突结构的荷叶 , 一、二级径向脊微结构的猪笼草顶瓶, 微米矩形鳞片周期性排列的蝴蝶翅膀等. 液滴在各向异性表面的润湿行为对于液滴操作和液滴运动的智能控制具有重大的科学和经济意义, 广泛应用于生物化学检测、水收集、微流控、水下减阻等领域. 化学性质异性或者物理结构不对称的表面均会在特定方向产生不平衡力, 表现出各向润湿异性. 沟槽表面是一种受到广泛关注的构建各向
-
0近几十年来,由于惯性微流体的高吞吐量、易于制造且不需要外力,人们对惯性微流体产生了浓厚的兴趣。惯性微流控系统的聚焦效率完全取决于微通道的几何特征,因为流体动力(惯性升力和迪恩阻力)是惯性微流控器件的主要驱动力。在过去的几年中,人们提出了新的微通道结构来提高粒子调控效率。然而,这些非常规结构的制造仍然是一个严峻的挑战。尽管研究人员推动了微纳加工技术的前沿发展,但用于惯性微流控的制造技术尚未得到全面讨
-
0目前,微流控技术在分子生物学、合成化学、诊断学和组织工程等领域的应用已经取得了显著的进展。然而,长期以来,微流控技术一直迫切需要能够实现以电子电路的精度、模块化且可扩展地操纵流体和悬浮物。正如电子晶体管使电子芯片上的电力自动控制取得了前所未有的进步一样,与晶体管类似的微流控元件也可以改善对微流控芯片上的试剂、液滴和单一细胞的自动控制。以往的研究已经构建出了一种类似于电子晶体管的微流控元件,但其并不
-
0微流控芯片系统 (Microfluidics) 或微流控芯片实验室,是将化学和生物等领域中所涉及的样品制备、反应、分离、检测及细胞培养、分选和裂解等基本操作单元集成到几个平方厘米 (甚至更小) 的芯片上,由微通道形成网络,由可控流体贯穿整个系统。目前的微流控芯片系统主要包括连续微流体系统和液滴微流体系统。 研究方向:基于液滴微流体的微流控芯片系统的研究 实验内容: 由于微生物筛选实验通常需要较长的时间,所以对微流控芯片中的微液滴
-
0体外细胞培养平台对现代研究、临床研究和药物开发至关重要。一个多世纪以来,培养皿一直是体外细胞培养的基石。这项技术的发明者朱利叶斯·理查德·佩特里打算将其用于微生物培养。时间证明了它在生物医学领域的广泛性与有用性。一个多世纪以来,这些器件已经被制作成了大量的材料设备,并成为了生物学领域的突破性研究。 然而,随着科学的不断进步,人们发现培养皿并不能完全还原体内生物的真实情况。换句话说,培养皿无法重现体内
-
0血脑屏障(blood-brain barrier,BBB)是由脑血管内皮细胞(brain microvessel endothelia cells,BMECs)和血管周围细胞形成的物理和功能屏障。BBB 对分子从血液到脑组织的运输具有高度的选择性,对于维持大脑的正常功能稳态至关重要,但也为药物进入脑组织产生治疗作用带来了困难。因此,为了深入了解血脑屏障的结构和功能,了解化合物通过BBB 的渗透性,需要建立合适的BBB 体外模型。作为被广泛使用的Transwell 方法和动物模型两种,其中Transwell 虽然在很大程
-
0微流控芯片检测基因缺失 一般而言,基因缺失主要是指高等动物、低等动物基因由于受到体内外各种因素的干扰促使机体部分基因区域缺如,由此将会影响高等动物、低等动物的部分结构和功能。目前,微流控芯片可以将高等动物、低等动物基因的大片段缺失区域进行确定,例如X染色体连锁的隐性遗传病抗肌萎缩蛋白基因的缺失,使用微流控芯片可以进行检测分析。国外一项研究显示,通过直接监控微流体平台单菌株生长,可以检测大肠杆菌菌株中
-
0微针因具有使用便捷、无痛等优点,在取样检测、透皮给药等生物医学诊断领域得到了日益广泛的应用。微流控芯片可对微量流体进行操控,具有试剂损耗少、检测速度快、灵敏度高等优点,在生化分析、环境科学等领域备受关注。早期,微流控芯片与微针的发展相对独立;随着微流控与微针在生物医药等领域的广泛应用和3D打印等先进微加工方法的出现,近年来微针与微流控芯片呈现出越来越多的结合应用的趋势,已初步应用于皮下取样、药物递送
-
0二氧化碳培养箱为细胞生长提供了理想的生长环境,细胞在培养箱中培养数月甚至数年,如果培养不当导致细胞死亡可能造成极大的科研成果损失。培养箱本身性能的稳定和可靠性固然重要,另外,正确的使用方法和日常保养对实验结果也是至关重要。 今天为大家介绍减少实验室细胞污染的三种途径:正确的使用培训、持续的日常保养、适当的摆放位置。 1、正确的使用培训 实验室内往往众多实验人员共用一台培养箱,难免有人为操作失误,都会增
-
0CO2培养箱发挥在医学研究中具有重要作用的地方细胞培养在无菌细致的方式可能被观测到。它们使不需要的微生物远离培养物,从而为生长提供称心的条件。不同的CO2培养箱提供了防止孵育室中污染的不同方法。本文将告诉您需要注意哪些产品细节,以便在各个领域取得很好的效果,如干细胞疗法,再生医学和整形外科。 CO2培养箱创建的很好的条件: 1.孵育人皮肤细胞为救生皮肤移植 2.格斗使用干细胞研究的疾病 3.发售干细胞疗法作为一种可行的替
-
0旋涂工艺有四个不同的阶段。第 3 阶段(流量控制)和第 4 阶段(蒸发控制)是对涂层厚度影响较大的两个阶段。 第一阶段: 将涂层流体沉积到晶片或基板上 可以使用将涂层溶液倒出的喷嘴来完成,也可以将其喷洒到表面上等。通常,与所需涂层厚度的量相比,该分配阶段提供的涂层溶液显着过量。 对于许多解决方案,通过亚微米级过滤器分配以消除可能导致缺陷的颗粒通常是有益的。另一个潜在的重要问题是溶液是否在此分配阶段完全润湿表面
-
0近日,南开大学张新星研究员团队针对微液滴化学的独特性质,受邀总结了40余个单电子介导的水微液滴表面自发的氧化还原反应,并通过动力学研究,证明了电子的提供和捕获——而非化学键的直接断裂——是介导水微滴界面上氧化还原反应的关键决速步骤。该工作发表在了近期的JACS Au 杂志上,并被遴选为封面文章。 近几年与微液滴相关的纳微界面反应机制的研究吸引了大量的研究目光。在技术上,质谱作为微液滴反应的主要表征手段,一方面是
-
0神奇的微液滴技术 一、微液滴的生成方法 微液滴是指体积较小且呈液态的微小液滴,其在许多领域中具有广泛的应用潜力。为了有效地生成微液滴,研究人员提出了多种方法。 常见的微液滴生成方法之一是微流控技术。该技术利用微细通道和精确的流体控制,将母液分割成均匀的小液滴。通过调节流速、流体性质以及通道几何结构等参数,可以实现对液滴大小和形状的控制。 另一种常用的方法是电动力学法。该方法利用电场作用力使得液体被分割
-
0基于微流控芯片的代表性关键技术 ① 微流控分析芯片是新一代床旁诊断(Point of care testing, POCT)主流技术,可直接在被检对象身边提供快捷有效的生化指标,使现场检测、诊断、治疗成为一个连续的过程; ② 微流控反应芯片以液滴为代表,是迄今为止最重要的微反应器,在高通量药物筛选,单细胞测序等领域显示了巨大的威力; ③ 微流控细胞/器官操控芯片是哺乳动物细胞及其微环境操控最重要技术平台,渴望部分代替小白鼠等动物模型,用于验
-
0热键合(fusion bonding) 对玻璃和石英材质刻蚀的微结构一般使用热键合方法,将加工好的基片和相同材质的盖片洗净烘干对齐紧贴后平放在高温炉中,在基片和盖片上下方各放一块抛光过的石墨板,在上面的石墨板上再压一块重0.5 Kg的不锈钢块,在高温炉中加热键合。 玻璃芯片键合时,高温炉升温速度为10℃/分,在620℃时保温3.5小时,再以10℃/分的速率降温。石英芯片键合温度高达1000℃以上。此方法对操作技术要求较高,芯片如一次封接后有干涉条
-
0