-
-
1微流控小白,刚开始学,导师让学ledit然后画个简单的掩膜板,软件操作是会了😭但是不知道该怎么画,有没有老哥原因分享个简单点的掩膜板
-
0微流控芯片的基本概念 微流控芯片,也被称为芯片实验室(LOC),是一种在微米级微管中精确操作微量流体的芯片,能够在微米级芯片上执行传统物理、化学或生物实验的各种功能。 微流控芯片的应用领域 生物学、医学、物理学和化学:微流控芯片特别适用于微纳流体的精确操作,流体操作的精度可以达到纳升甚至飞秒级别。 高通量系统:通过微流体设备的流体引导、混合、分离或操纵,实现多路复用、自动化和高通量系统。 S型微流控芯片的特点
-
0显影液在微流控行业中扮演着重要角色,特别是在微流控芯片的加工过程中。以下是显影液在微流控行业应用的一些关键点: 微流控芯片加工中的显影液 在微流控芯片的加工过程中,光刻是一个关键步骤,而显影液在这个过程中发挥着重要作用。具体来说,显影液用于去除未曝光的光刻胶,从而在基片上形成所需的图案。这一过程包括以下几个步骤: 步骤 描述 a. 基片清洗 通过抛光、酸洗、水洗的方法使硅、石英或玻璃等基片表面得以净化,并将其
-
0光刻掩膜(也称为光罩)和模具在微纳加工技术中都起着重要的作用,但它们的功能和应用有所不同。 光刻掩膜版 光刻掩膜版是微纳加工技术中常用的光刻工艺所使用的图形母版。它由不透明的遮光薄膜在透明基板上形成掩膜图形结构,通过曝光过程将图形信息转移到产品基片上。掩膜版的应用十分广泛,在涉及光刻工艺的领域都需要使用掩膜版,如集成电路(IC)、平板显示器(FPD)、微机电系统(MEMS)等。 光刻模具 光刻模具在某些特定的微加
-
0想必大家都有所了解,光刻机对芯片制造的重要性,而光掩膜版又称光罩,光掩膜等; 光掩膜版是由制造商通过光刻制版工艺将电路图刻制于基板上制作而成,主要作用体现为利用已设计好的图案,通过透光与非透光方式进行电路图形复制,从而实现芯片的批量生产。 其中,光掩膜版中包含集成电路的图案,随着晶体管变得越来越小,光掩膜的制造变得越来越复杂,以便将图案精确地转移到硅晶片上。 此外,光掩膜版应用也十分广泛,在涉及光刻工
-
0PDMS(聚二甲基硅氧烷)和PMMA(聚甲基丙烯酸甲酯,又称丙烯酸或有机玻璃)是两种常见的微流控芯片材料,它们各自有不同的特性和应用场景。 材料特性 PDMS: 优点: 高分子材料,具有透明性、弹性和可塑性。 适用于复制微结构,常用于微流体实验室设备和生物芯片的制造。 便宜且加工简便。 能够耐受高温和低温,具有良好的化学稳定性。 可以通过旋涂、固化等方式直接键合在石英或硅片上。 缺点: 表面容易被氧化,导致活性表面的持续时间
-
0恒压泵是一种能够输出恒定流量的泵类设备,它在工业、化工、医药等领域中广泛应用。它的工作原理和优势使得它成为了许多行业中设备之一。 微流控恒压泵的原理是基于气体驱动,能够输出恒定压力的精密流体泵,用于驱动微量流体的无脉冲流动。这种泵的设计旨在输出非常稳定的气体压力,从而驱动液体稳定流动。除了可以输出恒定的压力外,微流控恒压泵还能实现输出正弦波形压力、方波波形压力、三角波波形压力、斜坡波形压力及自定义
-
0掩膜版与光刻胶在芯片制造过程中扮演着不可或缺的角色,它们的功能和作用各有侧重,但共同促进了芯片的精确制造。 掩膜版,也称为光罩、光掩膜或光刻掩膜版,是微电子制造过程中的图形转移母版。它的主要功能是作为设计图形的载体,通过光刻过程将掩膜版上的设计图形转移到光刻胶上,再经过刻蚀,将图形刻到衬底上,从而实现图形到硅片的转移。掩膜版的精度和质量在很大程度上决定了集成电路最终产品的质量。在制造过程中,掩膜版
-
0微量注射泵在微流控领域是最经常使用的一种流量控制系统,微流注射泵的参考图片如下图所示。微量注射泵可分为两类:经典注射泵—价格便宜但是会产生流量振荡;无脉动的微流控微量注射泵—价格偏贵但是可以提供更高的流量稳定性。本文中,仅关注无脉动的微量注射泵。如果您决定使用常规或经典的注射泵,本文提供的信息将会对您有所帮助,但是请时刻记住一个事实是:在低流速下,您实验中的液体流动会不太稳定即会产生流动振荡。 微
-
0在微流控PDMS芯片加工的过程中,需要使用烘胶台或者烤胶机对SU-8光刻胶或PDMS聚合物进行烘烤。SU-8光刻胶的烘烤通常需要进行2-3次。本文简要介绍SU-8光刻胶烘烤的注意事项。 微流控SU-8光刻胶烘烤:软烘、后曝光烘烤和硬烘 在整个SU-8模具制备的过程中,微流控SU-8光刻胶需要烘烤2或3次,每一次烘烤都有不同的作用。 第一次光刻胶烘烤叫做软烘,是SU-8光刻胶旋涂之后需要完成的操作。目标是蒸发溶剂,使SU-8光刻胶更加坚固。溶剂蒸发会稍微的改变光
-
0微流控PDMS芯片通常采用等离子体处理的方法,不同的处理参数会影响到PDMS芯片的键合强度。良好的键合牢固的芯片的耐压强度可以达到3-5 bars的耐压值。本文将简要介绍PDMS-玻璃等离子体键合工艺过程中需要留意的注意事项。 玻璃/PDMS的等离子键合 等离子键合步骤允许您完成微流控芯片的加工过程。为了永久性的把PDMS芯片结合到玻璃片上,研究人员使用等离子清洗机来改变玻璃和PDMS的表面性质。等离子体处理将会改变玻璃和PDMS芯片表面的化学物质
-
0大家都知道掩膜版主要由基板、遮光层和保护膜组成,其中基板(主要采用玻璃基材,包括石英和苏打两种材质)占直接原材料成本比重达90%。 那么什么是掩膜版保护膜大家知道吗? 掩膜版保护膜,mask pellicle,是一种透明的薄膜,在生产中覆盖在掩膜版的表面。顾名思义,主要对掩膜版起物理与化学保护作用。 物理保护:保护掩膜版表面的图案免受在搬运或使用过程中的物理损伤。防止灰尘和其他污染物落在掩膜版表面。 化学保护:防止化学试剂
-
0
-
0
-
0微流控技术的优势 微流控技术的发展源于实现微型化、高通量和高灵敏度的生物检测需求。20世纪90年代以来,微流控技术在芯片制造、生物分析、药物筛选、基因测序等领域应用广泛。微流控技术相较于传统实验方法,有如下优势: 1.液体样品仅需要极少的体积,通量与均匀性更高,能更有效地利用有限的生物样品; 2.掌握了微型流体操控、分配、合并等技术,可以在几秒钟内完成精确的混合、扩增、检测操作; 3.微流控芯片可以很好的整合多样生物反
-
0微液滴的生成方法 早期使用的生成液滴方法主要有高速搅拌法、逐层组装技术、膜乳化法和界面聚合法等, 均可生成微纳米尺寸的液滴。 高速搅拌法工序少、操作简单、成本低; 逐层组装技术通用性和可控性强, 可用于构建药物控释系统, 灵活控制递药载体结构; 膜乳化法制备的高分子微球广泛应用于化妆品、医药、化工、电子等领域; 界面聚合法设备简单, 不要求严格的聚合物量比, 主要应用于新型材料的制备。这些方法至今仍在其各自适合的领域发挥
-
02.1 低成本微流控芯片加工方法 选取了常用的低成本微流控芯片加工方法进行介绍。 2.1.1 微模塑成型 由于PDMS材料在微流控芯片加工领域的广泛应用,基于PDMS的微模塑成型成为目前最为常见的微流控芯片加工方法。其中,使用SU—8光刻胶作为模具对PDMS进行模塑成型较为常见,将SU—8光刻胶旋涂在硅片上并进行光刻,根据不同型号SU—8光刻胶和旋涂速度的控制,其厚度可以在十几到一两百微米范围内自由调节;将PDMS主剂与硬化剂10∶1混合去除气泡后缓
-
0
-
0
-
0
-
0
-
0
-
0在工业应用中,有机涂层的固化过程是至关重要的。涂层在指定的条件下进行烘烤,有助于提高其耐久性和性能。但是,由于操作失误或设备故障,有时涂层可能会遭受过度烘烤,从而影响其最终性能。因此,深入了解过度烘烤对有机涂层的具体影响是至关重要的。 一、烘烤与涂层固化 烘烤是涂层固化的关键过程,它可以确保涂料在底材上固定,形成坚固的涂膜。适当的条件是根据涂料的化学成分和性质确定的。涂料生产厂家通常会为其产品提供更
-
0
-
0在使用光刻胶时,我们往往会遇到气泡的问题,而且气泡的存在往往会直接影响光刻质量,因此我们需要搞清楚气泡产生的原因和怎样消除气泡带来的不良影响。光刻胶的气泡产生的因素是多种多样的,想要搞清楚气泡产生的原因,我们需要按照出现(或者发现)气泡产生的环节进行分析,接下来我们按照涂胶烘烤过程、曝光过程来介绍几种常见的气泡产生原因和消除方法: 旋涂光刻胶时发现气泡 在涂布光刻胶前如果光刻胶瓶子有摇动或移动时,或
-
0晶圆显影过程是光刻工序中必不可少的步骤,显影过程已经经历了几十年的创新和进步。那么常见的显影方式有几种?显影液的种类有哪些?显影的机理是什么?显影主要的控制因素有哪些? 什么是显影? 显影(photoresist developing),显影是将显影液应用于曝光后的光刻胶。显影液是一种化学溶剂,作用是洗去光刻胶中被曝光或未被曝光的部分,从而在晶圆上得到出所需的图案。 具体来说: 在正胶中,曝光部分在显影过程中会被洗去。 在负胶中,未
-
0微纳尺度物质的分离和分选在精准医学、材料科学和单细胞分析等研究中至关重要。精准、高效和快速的分离微纳尺度物质能够为癌症的早期诊断、生物样品检测和细胞筛选提供重要帮助,其中基于外加场分离技术的分离微纳尺度物质因可以对微纳尺度物质高效在线分离和分选,被广泛应用于微纳米颗粒、外泌体以及生物细胞的分离工作中,而目前多数外加场分离技术存在装备繁琐和样品消耗大等问题。微流控技术是一种通过制作微通道和微流控芯片操纵
-
0润湿性和微流体技术有着千丝万缕的联系,基于润湿性的微流体方法显示出相当大的潜力。除了微流体之外,研究人员对润湿性研究也重新产生了兴趣。微流控技术用于信号检测、细胞培养和材料合成等多个领域,其主要目的是促进微小液滴在宽度约为 10 μm 的窄管内的调节运动。由于对微米级流体力学的理解有限,微流体需要基于润湿性设计的系统建模。本综述首先对仿生表面进行评估,以全面概述润湿性和微流体。该分析强调清晰度和逻辑结构,
-
0摘 要 现有细菌定量检测多依赖专业实验室,检测周期较长。 针对此问题,本研究基于微流控芯片液滴数字化分析,建立了一种细菌定量检测方法。 采用具有平行液滴分析单元的微流控芯片,其特点在于使用了注射器真空驱动液滴产生方法。 借助刃天青显色反应引起的荧光强度改变,可指示液滴内活性细菌的存在。 通过计算细菌阳性液滴的比例,采用泊松分布算法,计算出原始样品中的细菌密度。 实验结果表明,本方法可在3. 5 h 内完成细菌定量分析,动态检测
-
0微流控芯片 北京线下:书本教材及所有案例模型文件、会议回放视频 1、Comsol 基本操作:了解Comsol的建模步骤与方法,熟悉基本操作流程 2、建立通道流动:建立二维及三维的通道流动,熟悉通道流动的建立过程 3、建立相对复杂的通道流动:重点对通道结构的建立方法进行讲解,巩固通道流动的建模与后处理方法 4、对流扩散过程模拟:建立被动式微混合器的建模分析模型,熟悉多场耦合的原理和实施步骤 5、电泳过程模拟:以十字通道中的样品电泳
-
0
-
0微阵列芯片 SELEX 技术筛选适配体 微阵列芯片及其分类 微阵列芯片是通过微点阵技术或微颗粒填充技术将数以万计的生物探针固定在基板上,通过生物探针与溶液中的待测分子特异性结合完成分析和检测过程。 微阵列芯片表面不存在微通道、微腔室等微结构,无需考虑流体在芯片内部流动造成的堵塞和气泡等问题,降低了芯片加工和使用的难度。 另外,微阵列芯片的实验结果可通过计算机阵列分析技术获得。 核酸微阵列芯片与蛋白质微阵列芯片 核酸微阵
-
0这篇综述文章概述了微流控在即时(POC)诊断中的应用,重点关注病毒感染的快速诊断。引言定义了 POC 诊断,并强调了快速诊断病毒感染的重要性。讨论了微流体在诊断中的历史,以及与传统诊断技术的比较。介绍了微流控的原理和微流控器件的基本组件。讨论了微流控在诊断中的优缺点,包括快速诊断、低样本量要求以及与各种检测技术的集成。重点介绍了用于病毒感染的微流控诊断设备的例子,包括商业和基于研究的。还探讨了病毒感染的传感
-
0在做微流控实验的过程中,通常会有气泡存在于微流控的通道中,这些气泡有时候会影响实验的精确度和稳定性,因此,在做某些实验时,我们需要在气泡进入到微流控芯片通道内部之前将其过滤掉。 如果要想排除掉微流控通路上的气泡,那么我们需要先了解下,气泡是从哪里引入的。微流控通道内的气泡来源主要有如下几个方面: (1)开始向芯片通道内注入液体 当开始做微流控实验时,需要启动微流控装置,把所需要的实验液体注入到芯片的通
-
0T型微通道内的幂律流体液滴破裂行为 近几十年来,微流控技术由于安全性高、易于控制、高效率以及耗能少等一系列优点,获得了工业界与学术界的广泛关注,并得到了迅速发展.作为微流控技术的一个重要分支,液滴微流控技术主要研究液滴破裂、变形及融合等行为,广泛用于化工、医学工程、细胞工程与食品科学等领域.T型微通道作为被控制的基础单元,因其结构简单、加工容易,被广泛用于研究两相传热传质问题.由于液滴在T型微通道中破
-
0摘要:液滴微流控技术在微纳米尺度上对多种流体的流动进行精确控制,从而能够以高通量的方式生成结构可调和成分可控的微纳米液滴。通过结合合适的水凝胶材料和制造方法,可以将单个或多个细胞高效地封装进水凝胶中,制备细胞凝胶微球。细胞凝胶微球可以为细胞的增殖、分化等提供一个三维的、相对独立可控的微环境,在三维细胞培养、组织工程与再生医学、干细胞研究和单细胞研究等生命科学领域具有重要价值。本文主要综述了基于液滴
-
0我想用微流控技术实现组织细胞包埋,制作微囊。我将壳聚糖和氯化钙的混合溶液直接滴入海藻酸钠溶液中反应形成微胶囊,是形成均质的微囊,还是一层一层的?为什么内部是液态的?如果我用两步法制备,如何继续用微流控技术实现将海藻酸钙凝胶珠再与壳聚糖反应?另柠檬酸钠的作用是什么?
-
0细胞是生物结构和功能的基本单元,在类型和状态上有很大差异。在大多数生物系统中,我们对细胞多样性的认识是不完整的,就像神经系统(脑细胞)这样的复杂组织。单细胞识别和功能的表征,作为对每个细胞的功能和反应的理解,将加速生物领域的发现。它可能是癌症、肿瘤,几何任何可能在细胞群中具有多样性的东西。然而,今天的技术并不能提供一种简单的方法来同时分析大量的单个细胞。快速、可扩展的液滴测序(Drop-Seq)这种方法可以
-
0注射泵是生命科学研究中常见的用于均匀注射微量液体的仪器,通过精密装置控制注射器活塞的平稳运行和精确定位。在实验中采用高精度注射泵不仅可以节约成本,还可最大程度减少实验错误的出现次数以及避免出现低效率工作的情况。 注射泵特点 注射泵是一种智能化的注射装置,能够将药物精确、均匀、持续地输入体内,严格控制药物用量,保证药物最佳的有效的浓度,合理地调节药物的注射速度,连续输注各种急需的药物,减少并发症的发生。 01 精
-
0一般来说,动态分配是优先选择,因为它是一种更受控的过程,可以提供更好的基板间变化。这是因为在开始旋转之前溶剂蒸发的时间较短,并且斜坡速度和分配时间不太重要(只要允许基材有时间达到所需的转速)。动态分配通常也使用较少的墨水,尽管这确实取决于表面的润湿特性。 动态分配的缺点是,当使用低于1000rpm的低旋转速度或非常粘稠的溶液时,获得完整的基材覆盖变得越来越困难。这是因为向心力不足以将液体拉过表面,而较低的旋
-
0结果 1 染料定性表征浓度梯度 随着荧光素钠与苋菜红流速比的增加, 荧光素钠成分在通道中所占比例逐渐增加。当流速比 < 1时, 苋菜红在4个通道中含量较高(图 2A~D); 当流速比 > 1时, 荧光素钠在4个通道中含量较高, 不利于拉开浓度差异, 形成浓度梯度(图 2I~L、M~P); 当两水相流速比为1时(即流速均为100 μL·h-1), 芯片可以生成较好的浓度梯度, 接近于线性浓度梯度(图 2E~H)。同时, 结果可以看出当流速差异较大时, 两水相分界清晰, 流体在流动过程中不能充
-
000在微流控芯片的加工过程中,通常都会用到模具,尤其是在PDMS芯片加工的过程中。PDMS芯片加工通常采用软光刻技术来制作。为了执行PDMS软光刻技术的加工过程,通常您需要用到模板,常规和经常使用的模板一定是环氧树脂SU-8模具。每年都会有许多实验室从事微流控芯片的加工活动,并且有时会使用不好的实验设备或不正确的实验方法。本博文简要介绍如何使用环氧树脂SU-8加工一个PDMS芯片模具的基本知识。 本文中,介绍使用旋涂机来分配/匀涂树脂0一、微流控芯片制作步骤 微流控芯片是一种在微尺度下进行液体操控的小型化装置,广泛应用于生物医学领域。了解微流控芯片的制作步骤对于研究人员和工程师来说至关重要。 首先,在微流控芯片制作之前,需要设计并优化芯片的结构。这包括确定芯片的通道尺寸、形状和布局,以及选择合适的材料。 其次,准备芯片制作所需的材料和设备。常见的材料包括聚二甲基硅氧烷(PDMS)和玻璃基片。而设备则包括光刻机、薄膜沉积设备等。 接下来,通0体外实体瘤模型是癌症研究和药物筛选的重要工具。多细胞肿瘤球状体(MCTS)是一种具有生理相关性的三维细胞培养模型,表现出类似实体瘤的结构、代谢和耐药性特征。为了推动其在生物医学研究中的应用,具备高通量、广泛的细胞种类适用性、批次间一致性、以及构建复杂球体能力的MCTS制造技术尚有待开发。 近日,清华大学林金明研究团队提出了一种新型的多细胞肿瘤球状体制备方法,利用微流控液滴技术和细胞膜工程技术对制造过程进行严格0数字微流控芯片(Digital microfluidic chip)主要有两种结构:一种是开放式结构(单平板);另一种是封闭式结构(双平板)。在开放式结构中,驱动电极和地电极处于同一基板上;而在封闭式结构中,由上、下两板组成,通常上板作为地电极,一般由氧化铟锡(ITO)组成,下板作为驱动电极,包含一系列电极阵列。 数字微流控芯片一般由四个基本部分组成:基底、电极层、介质层和疏水层,需要根据实验需求选择合适的材料。 1、基底 基底作为芯片的3微流控芯片技术交流群00聚二甲基硅氧晶片是目前国内外研究最多、应用最广的一类高分子聚合物芯片。微流体晶片表面问题复杂。第一, 表面疏水性很高,未处理表面水的接触角度过大,清洗片与电泳分离时,微通道中极易出现气泡,第二,该芯片的导热性较差,比玻璃晶片低约五到六倍的导热性,对焦耳热有效散发极为不利,高分散场的应用受到很大限制,再者,微流控芯片是多孔的,被吸附的疏水小分子如其动力学直径小于芯片微孔直径,晶片内部将会扩散、迁移,