13.设cn=an/n^2,Cn+1=an+1/(n+1)^2,Cn+1/Cn=1/2,{Cn}是公比为1/2,首相为1的等比数列,
Cn=1/2^(n-1),an=Cnn^2=n^2/2^(n-1).
bn=(2n+1)/2^n,错位相减可求得:Sn=2-2^n-n2^(n+1).
11.解:n>=2时,Sn-Sn-1=an带入,有:1/Sn-1/Sn-1=2,{1/Sn}是公差为2,首相为1的等差数列,1/Sn=2n-1,Sn=1/(2n-1).bn=1/2[1/(2n-1)-1/(2n+1)],Tn=n/(2n+1).
10.an是首相为-3,公差为-2的等差数列,S1000=1002000.
12.解:因递增,d>0,由(a3)^2=a1a9得:d=a1,由S5=(a5)^2得:a1=3/5,an=3n/5,bn=25/9+25/9[1/n-1/(n+1)],Tn=25n(n+2)/9(n+1).
Cn=1/2^(n-1),an=Cnn^2=n^2/2^(n-1).
bn=(2n+1)/2^n,错位相减可求得:Sn=2-2^n-n2^(n+1).
11.解:n>=2时,Sn-Sn-1=an带入,有:1/Sn-1/Sn-1=2,{1/Sn}是公差为2,首相为1的等差数列,1/Sn=2n-1,Sn=1/(2n-1).bn=1/2[1/(2n-1)-1/(2n+1)],Tn=n/(2n+1).
10.an是首相为-3,公差为-2的等差数列,S1000=1002000.
12.解:因递增,d>0,由(a3)^2=a1a9得:d=a1,由S5=(a5)^2得:a1=3/5,an=3n/5,bn=25/9+25/9[1/n-1/(n+1)],Tn=25n(n+2)/9(n+1).