18:解: (1) 当λ=1/3时 AP=1/3AB,
CP²=(CA+AP)²=CA²+2CA•AP+AP²=6²-2×6×2×1/2+2²=28
∴|CP|=2√7
(2) 等边三角形的边长为a
则CP•AB=(CA+AP)•AB=(CA+λAB)•AB=-1/2a²+λa²
PA•PB=PA•(AB-AP)=λAB•(AB-λAB)=-λa²+λ²a²
即-1/2a²+λa² ≥ -λa²+λ²a²
∴λ²-2λ+1/2≤0
∴(2-√2)/2 ≤ λ ≤ (2+√2)/2
又0 ≤ λ ≤1
∴(2-√2)/2 ≤ λ ≤1
CP²=(CA+AP)²=CA²+2CA•AP+AP²=6²-2×6×2×1/2+2²=28
∴|CP|=2√7
(2) 等边三角形的边长为a
则CP•AB=(CA+AP)•AB=(CA+λAB)•AB=-1/2a²+λa²
PA•PB=PA•(AB-AP)=λAB•(AB-λAB)=-λa²+λ²a²
即-1/2a²+λa² ≥ -λa²+λ²a²
∴λ²-2λ+1/2≤0
∴(2-√2)/2 ≤ λ ≤ (2+√2)/2
又0 ≤ λ ≤1
∴(2-√2)/2 ≤ λ ≤1