1、 他们会相遇吗?
“你从哪儿打电话来?”伯特问道。此刻他正在默顿街和斯普路斯街交角处的办公室里,一边听着电话,一边透过窗户注视着窗外拥挤的交通。
“在戴尔街和金街交叉处的一个公用话亭,”传来的是本恩的微弱的回答,“从你那儿往南走四个街段,往东走几个街段!”
伯特看了一下钟,喊道:“你现在就开始走,我们在半路上碰面!”他砰地一声放下电话。而只是在这个时候他才意识到自己刚才太快挂了电话,没讲清楚互相怎么走法。
实际上,在两个交叉点之间恰好有70种不同走法的线路,而且线路之间的选择跟距离没有什么关系。
那么,你怎么理解本恩话中“几个”的意思呢?
2、他的第一份工作
“嗨!约翰尼斯,”星期天乔在街上遇到一个年轻人向他喊道,“好久不见,我听说你开始工作啦!”
“几个星期了,”约翰尼斯回答道,“这是一份计件工作,我干得挺好的。第一星期我得了四十多美元,而且后来每个星期都比前一个星期多赚99美分。”
“这真是巧事!”乔笑了笑并继续说,“愿你一如继往都能这样!”
“我估计用不了多久我一个星期便能赚到60美元,”年轻人告诉乔,“自从开始工作到现在,我已经赚了整整407美元。这的确不坏!”
试问,约翰尼斯第一个星期赚了多少?
3、1=2的证明
推理的艺术触及到我们生活的方方面面,比如决定吃什么,用一张什么样的地图,买一件什么样的礼物,或者证明一个几何定理,等等。有关推理的种种技巧,都演入了问题的解决之中。在推理中一个小小的毛病都可能导致十分怪异和荒谬的结果。例如,你是一名计算机的程序员,你就会担心由于某一步骤的忽略而导致了一种无限的循环。我们中间谁能保证在我们的解释、解答或证明中不会发现一点错误呢?在数学中除以零是一种常见的错误,它能引发像下面“”1=2“”的证明那样的荒谬的结果。你能发现它错在哪里吗?
1=2?
如果a=b,且a,b>0,则1=2。
证明:
1)a,b>0 已知
2)a=b 已知
3)ab=bb 第2步“=”的两边同“×b”
4)ab-aa=bb-aa 第3步“=”的两边同“-aa”
5)a(b-a)=(b+a)(b-a) 第4步的两边同时分解因式
6)a=(b+a) 第5步“=”的两边同“÷(b-a)”
7)a=2a 第2,6步替换
8)a=2a 第7步同类项相加
9)1=2 第8步“=”的两边同“÷”
4、一个弹子的游戏
“你们自己来,但每人只拿12个,”吉姆一边说着一边从盒子里摸出了一打弹子,“我们这里绿色的弹子比蓝色的少,而蓝色的弹子又比红色的少。所以大家拿的时候,每人红的要拿最多,绿的要拿最少。但每种颜色都要拿!”
吉姆自己这样做后,其他的男孩也都照着做。这里总共只有三种颜色的弹子,而且盒子里弹子的数量也刚好够大家拿。
“我们大伙拿法全都不一样!”乔观察了一下大家拿出的弹子说道。“只有我有四个蓝的!”
“那又怎么样?”皮特发现自己在地下掉了一个绿色的弹子,于是把它捡了起来,“让我们玩吧!”
于是他们开始玩起弹子的游戏。
这里总共有26个红色的弹子。试问这里有多少个男孩呢?
5、聚会之后
“昨晚他们离开的时候似乎都还清醒,”鲍勃说着,此时他刚刚从办公室回到家。
“我看不会比你更糟,”他妻子确信地信,“怎么啦?”
鲍勃淡淡地笑了笑,“他们四个人整天都在给我打电话,”他告诉她,“我得去解开这个谜结。他们一个个都互相拿错了别人的大衣和另一个人的帽子。”
“你到家的时候我就觉得有点不对劲,”贝蒂笑道,“继续讲你这个伤心的故事吧!”
“好吧,我分头说:乔拿走了一个家伙的大衣,而那个家伙的帽子又被史蒂夫拿走;史蒂夫的大衣是被另一个人拿走的,而那个人又拿走了乔的帽子。”
“那么罗恩又怎么样呢?”贝蒂对此颇感兴趣。
“他第一个打电话来,”鲍勃回答,“他把多哥的帽子拿走了。”
这真是一次十足的聚会!试问,乔和史蒂夫拿走了谁的大衣和帽子?
6、六位数的和
下面有组六位数,请你快速算出它们的和。怎样算简单些?
328645 491221
816304 117586 671355
508779 183696 882414
7、时针分针对调
请你试图找出时针分针位置对调后时间仍然合理的时间。(如:当时间为12点整时,时针和分针互换还是合理的;而当时间为1点时,时针和分针互换后,看起来像12:05分,但是真正的12:05分,时针去过了12这个数字一点,所以也不符合。)
会吗??求答案+过程!!
“你从哪儿打电话来?”伯特问道。此刻他正在默顿街和斯普路斯街交角处的办公室里,一边听着电话,一边透过窗户注视着窗外拥挤的交通。
“在戴尔街和金街交叉处的一个公用话亭,”传来的是本恩的微弱的回答,“从你那儿往南走四个街段,往东走几个街段!”
伯特看了一下钟,喊道:“你现在就开始走,我们在半路上碰面!”他砰地一声放下电话。而只是在这个时候他才意识到自己刚才太快挂了电话,没讲清楚互相怎么走法。
实际上,在两个交叉点之间恰好有70种不同走法的线路,而且线路之间的选择跟距离没有什么关系。
那么,你怎么理解本恩话中“几个”的意思呢?
2、他的第一份工作
“嗨!约翰尼斯,”星期天乔在街上遇到一个年轻人向他喊道,“好久不见,我听说你开始工作啦!”
“几个星期了,”约翰尼斯回答道,“这是一份计件工作,我干得挺好的。第一星期我得了四十多美元,而且后来每个星期都比前一个星期多赚99美分。”
“这真是巧事!”乔笑了笑并继续说,“愿你一如继往都能这样!”
“我估计用不了多久我一个星期便能赚到60美元,”年轻人告诉乔,“自从开始工作到现在,我已经赚了整整407美元。这的确不坏!”
试问,约翰尼斯第一个星期赚了多少?
3、1=2的证明
推理的艺术触及到我们生活的方方面面,比如决定吃什么,用一张什么样的地图,买一件什么样的礼物,或者证明一个几何定理,等等。有关推理的种种技巧,都演入了问题的解决之中。在推理中一个小小的毛病都可能导致十分怪异和荒谬的结果。例如,你是一名计算机的程序员,你就会担心由于某一步骤的忽略而导致了一种无限的循环。我们中间谁能保证在我们的解释、解答或证明中不会发现一点错误呢?在数学中除以零是一种常见的错误,它能引发像下面“”1=2“”的证明那样的荒谬的结果。你能发现它错在哪里吗?
1=2?
如果a=b,且a,b>0,则1=2。
证明:
1)a,b>0 已知
2)a=b 已知
3)ab=bb 第2步“=”的两边同“×b”
4)ab-aa=bb-aa 第3步“=”的两边同“-aa”
5)a(b-a)=(b+a)(b-a) 第4步的两边同时分解因式
6)a=(b+a) 第5步“=”的两边同“÷(b-a)”
7)a=2a 第2,6步替换
8)a=2a 第7步同类项相加
9)1=2 第8步“=”的两边同“÷”
4、一个弹子的游戏
“你们自己来,但每人只拿12个,”吉姆一边说着一边从盒子里摸出了一打弹子,“我们这里绿色的弹子比蓝色的少,而蓝色的弹子又比红色的少。所以大家拿的时候,每人红的要拿最多,绿的要拿最少。但每种颜色都要拿!”
吉姆自己这样做后,其他的男孩也都照着做。这里总共只有三种颜色的弹子,而且盒子里弹子的数量也刚好够大家拿。
“我们大伙拿法全都不一样!”乔观察了一下大家拿出的弹子说道。“只有我有四个蓝的!”
“那又怎么样?”皮特发现自己在地下掉了一个绿色的弹子,于是把它捡了起来,“让我们玩吧!”
于是他们开始玩起弹子的游戏。
这里总共有26个红色的弹子。试问这里有多少个男孩呢?
5、聚会之后
“昨晚他们离开的时候似乎都还清醒,”鲍勃说着,此时他刚刚从办公室回到家。
“我看不会比你更糟,”他妻子确信地信,“怎么啦?”
鲍勃淡淡地笑了笑,“他们四个人整天都在给我打电话,”他告诉她,“我得去解开这个谜结。他们一个个都互相拿错了别人的大衣和另一个人的帽子。”
“你到家的时候我就觉得有点不对劲,”贝蒂笑道,“继续讲你这个伤心的故事吧!”
“好吧,我分头说:乔拿走了一个家伙的大衣,而那个家伙的帽子又被史蒂夫拿走;史蒂夫的大衣是被另一个人拿走的,而那个人又拿走了乔的帽子。”
“那么罗恩又怎么样呢?”贝蒂对此颇感兴趣。
“他第一个打电话来,”鲍勃回答,“他把多哥的帽子拿走了。”
这真是一次十足的聚会!试问,乔和史蒂夫拿走了谁的大衣和帽子?
6、六位数的和
下面有组六位数,请你快速算出它们的和。怎样算简单些?
328645 491221
816304 117586 671355
508779 183696 882414
7、时针分针对调
请你试图找出时针分针位置对调后时间仍然合理的时间。(如:当时间为12点整时,时针和分针互换还是合理的;而当时间为1点时,时针和分针互换后,看起来像12:05分,但是真正的12:05分,时针去过了12这个数字一点,所以也不符合。)
会吗??求答案+过程!!