证:(∑1/(x+n)^2)^2=∑1/(x+n)^2*[1/(x+n)^2+2(k=n+1,∞)∑1/(x+k)^2].
故只需证an=1/(x+n)+2(x+n)(k=n+1,∞)∑1/(x+k)^2>2.
由an+1-an=-1/(2x+2n+1)(x+n)(x+n+1)<0,故{an}递减.
易得liman=2,所以an>2.
故只需证an=1/(x+n)+2(x+n)(k=n+1,∞)∑1/(x+k)^2>2.
由an+1-an=-1/(2x+2n+1)(x+n)(x+n+1)<0,故{an}递减.
易得liman=2,所以an>2.