在粒子物理学中,量子电动力学(英语:Quantum Electrodynamics,简称QED)是电动力学的相对论性量子场论。它在本质上描述了光与物质间的相互作用,而且它还是第一套同时完全符合量子力学及狭义相对论的理论。量子电动力学在数学上描述了所有由带电荷粒子经交换光子产生的相互作用所引起的现象,同时亦代表了经典电动力学所对应的量子理论,为物质与光的相互作用提供了完整的科学论述。
用术语来说,量子电动力学就是电磁量子真空态的微扰理论。它的其中一个创始人,理查德·费曼把它誉为“物理学的瑰宝”("the jewel of physics"),原因是它能为相关的物理量提供极度精确的预测值。
费曼对量子电动力学的说明中,有一项关键,那就是三个基本作用:
一光子从一时间地点,移动到另一时间地点
一电子从一时间地点,移动到另一时间地点
一电子在某一时间地点,发射或吸收一光子
这些作用可以用图像表示,也就是费曼图的三种基本元素:波浪线代表光子,直线代表电子,两直线与一波浪线的交汇处代表电子发射或吸收光子的顶点。见右图。
重点是,不要过度诠释这些图。不要从这些图中引申出粒子是如何从一点移动到另一点的。这些图并没有代表着粒子会以直线或曲线移动。它们也不代表粒子会以固定速度行进。按惯例使用波浪线代表光子的这件事,并不意味着认定光子被电子更像波。这些图只是单纯代表上述作用的符号:光子和电子确实会以某种方式从一点移动到另一点,而电子也确实会以某种方式发射及吸收光子。实际上人们尚未能这些事是如何发生的,但是理论会计算出这些事发生的概率。
费曼除了介绍了这些作用的图像表示之外,还为一个数量提供了另一种表示方式,这个数量叫概率幅。概率幅的平方就是概率。假设一光子由一时间空间——标记为A——移动到另一时间空间——标记为B——那么费曼就会用来表示光子概率幅。另一个相近的量,电子从C移动到D的概率幅,则会被写成。而发射或吸收光子的概率幅,费曼把它叫。这个量与测量出的电荷有关,但并不一样[1]:91。
量子电动力学是基于一个假设的,就是假设所有多个电子与光子间的复杂相互作用,都能够以适当地组合上述三种构成要素来代表,然后以概率幅计算出这些复杂相互作用的概率。原来只需要假设前面提到的概率幅(、和),其平方即为日常常见的概率,那么就能简明地解释量子电动力学的基本点子(费曼的书的简化版)。之后,上述这一点会被修正,引入对应的量子数学,这样就可遵循费曼的方式。
下文所用的概率幅有着以下的基本规则:
一、若一事件能以多种不同的方式发生,那么其概率幅为各发生方式概率幅的【和】;
二、若一过程中包括多种独立的子过程,则其概率幅为各子过程概率幅的【积】。
用术语来说,量子电动力学就是电磁量子真空态的微扰理论。它的其中一个创始人,理查德·费曼把它誉为“物理学的瑰宝”("the jewel of physics"),原因是它能为相关的物理量提供极度精确的预测值。
费曼对量子电动力学的说明中,有一项关键,那就是三个基本作用:
一光子从一时间地点,移动到另一时间地点
一电子从一时间地点,移动到另一时间地点
一电子在某一时间地点,发射或吸收一光子
这些作用可以用图像表示,也就是费曼图的三种基本元素:波浪线代表光子,直线代表电子,两直线与一波浪线的交汇处代表电子发射或吸收光子的顶点。见右图。
重点是,不要过度诠释这些图。不要从这些图中引申出粒子是如何从一点移动到另一点的。这些图并没有代表着粒子会以直线或曲线移动。它们也不代表粒子会以固定速度行进。按惯例使用波浪线代表光子的这件事,并不意味着认定光子被电子更像波。这些图只是单纯代表上述作用的符号:光子和电子确实会以某种方式从一点移动到另一点,而电子也确实会以某种方式发射及吸收光子。实际上人们尚未能这些事是如何发生的,但是理论会计算出这些事发生的概率。
费曼除了介绍了这些作用的图像表示之外,还为一个数量提供了另一种表示方式,这个数量叫概率幅。概率幅的平方就是概率。假设一光子由一时间空间——标记为A——移动到另一时间空间——标记为B——那么费曼就会用来表示光子概率幅。另一个相近的量,电子从C移动到D的概率幅,则会被写成。而发射或吸收光子的概率幅,费曼把它叫。这个量与测量出的电荷有关,但并不一样[1]:91。
量子电动力学是基于一个假设的,就是假设所有多个电子与光子间的复杂相互作用,都能够以适当地组合上述三种构成要素来代表,然后以概率幅计算出这些复杂相互作用的概率。原来只需要假设前面提到的概率幅(、和),其平方即为日常常见的概率,那么就能简明地解释量子电动力学的基本点子(费曼的书的简化版)。之后,上述这一点会被修正,引入对应的量子数学,这样就可遵循费曼的方式。
下文所用的概率幅有着以下的基本规则:
一、若一事件能以多种不同的方式发生,那么其概率幅为各发生方式概率幅的【和】;
二、若一过程中包括多种独立的子过程,则其概率幅为各子过程概率幅的【积】。