因为在正三棱锥 ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点。
球心到截面ABC的距离为球的半径减去正三棱锥 ABC在面ABC上的
高。已知球的半径为√3 ,所以正方体的棱长为2,可求得正三棱锥 ABC在面ABC上的高为 (2√3)/3,所以球心到截面ABC的距离为 √3-(2√3)/3=√3/3
【点评】本题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱锥转化为正方体来考虑就容易多了。
球心到截面ABC的距离为球的半径减去正三棱锥 ABC在面ABC上的
高。已知球的半径为√3 ,所以正方体的棱长为2,可求得正三棱锥 ABC在面ABC上的高为 (2√3)/3,所以球心到截面ABC的距离为 √3-(2√3)/3=√3/3
【点评】本题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱锥转化为正方体来考虑就容易多了。