f(x)在R上为奇函数且连续==>f(0)=0而f(1)=a,f(-1)=-a,构造g(x)=f(x)/e^x,g(0)=f(0)/e^0=0,g(1)=f(1)/e=a/e,g'(x)<0,故在(0,1)上g(x)递减,所以g(0)>g(1)==>0>a/e==>a<0,则f(0)>f(1),即f(x)在(0,1)上亦递减。由f(1-x)=f(1+x)得f(x)的其中一条对称轴为x=1,周期T=4,故f(2015)=f(504T-1)=f(-1)=-a,f(2016)=f(504T)=f(0)=0,所以在【2015,2016】上f(x)max=f(2015)=-a.