严格说明一下所谓能带理论中能谱E_n(k)的k的含义
它并非对应着电子真实动量,作为简约波矢,它是平移对称算符T(Rn)的量子数,其与自由电子波矢(此后通通简称自由波矢)关系是相差整数倍的倒格矢。。仔细来说,简约波矢本(为了避免混淆这里用k表示简约波矢,而k'表示自由波矢)身就是对应于晶格平移对称算符特征值λ=exp(ik·R_n)的量子数 (其中Rn为正格矢),简约波矢k可以相差整数倍倒格矢而本征值λ没变化:k-> k+G_n ;为了使得k与特征值一一对应,于是限制k取值在第一布里渊区,也称为简约布里渊区。那么简约波矢与自由波矢:k'=n(2π/a)+k
用近自由电子模型给出能谱后可以看到能量随着简约波矢k增大而提高(很自然的结果,类比一下自由运动电子的能谱为E(k‘)=ћk’^2/2m).而前面规定了简约波矢在第一(简约)布里渊区取值后,相当于将各个真实波矢对应的能带都通通平移整数倍的倒格矢到简约布里渊区中表示,也即用k、n两个"量子数"去代替一般的满足周期性边界条件意义下的自由波矢k' “量子数”(这里所谓自由波矢k'也不是什么电子真实动量对应的波矢)。下面简明给出1D晶格近自由电子模型的能谱图像:
近自由电子的简约布里渊区表示(1D的简约布里渊区就是[-π/a,+π/a])
为此,能谱除了标出简约波矢外,还需要相应的能带指标n(也就是上面k-k'关系中的整数n)作为标记:E_n(k) ;同理,波函数标记就变为ψ_nk(r) 。
(简约布里渊区表示)
既然k是晶格平移对称算符的量子数,那么地,同一个能带的电子波函数以及能谱都是相应k的周期函数(Bloch Thm.):E_n(k)=E_n(k+G_n).
由此可以引入能谱另一种表示:周期布里渊区表示。亦即简约布里渊区图像的关于简约波矢k的周期延拓而派生出的能带图像
(周期布里渊区表示)
若取消不用能带指标n这个量子数,则将对应各个能带对应到到不同布里渊区中,即将E(k)用表示为k的单值函数,各能带E_1(k)、E_2(k)、E_3(k)...对应得k取值分别限制于第一、二、三...等等各个布里渊区。实际上相当于在晶格周期势场中依旧用满足周期性边界条件的自由波矢的取值去标志能带(然而要注意,这种自由波矢和真正自由电子的自由波矢意义不同,这里我们可以看到实际上简约布里渊区表示和扩展布里渊区表示完全是等价同一回事,所以周期晶格势场中“简约波矢”和所谓“自由波矢”实际上对于能谱来说都是等价表述的不同取值的量子数而已)这种能带表示方法称为扩展布里渊区表示。
(扩展布里渊区表示)
电子在晶格中的简约波矢并不是电子真实动量算符的特征值,而它的意义只是在具有晶格平移周期势场中标记电子状态的其中一个量子数(类似于具有完全连续平移对称空间中标记电子不同运动状态的动量p,只不过晶格内是离散的平移对称);根据Bloch thm.知道
ψ_k(r)∝exp(ik·r)u(r),而将动量算符(-iћ ▽) 作用于ψ_k(r)时可以得到 ▽u(r) 这个项,而u(r)就是由于晶格周期势场造成 电子自由波exp(ik·r)与晶格势场V(r)耦合形成的晶格中电子的
Bloch波函数,在弱周期势场解(近自由电子近似)下的Bloch波函数正是入射自由波与散射波的相干叠加;于是 真正要论及电子真实动量,其实是需要将晶体整体在于电子散射作用过程产生的动量也计算入内,因此和电子的简约波矢对应的“动量”ћk并不是简单的正比例关系。然而在固体系统里面,我们只对电子在晶格这个大的背景下表现出来的运动行为感兴趣,因此与晶格耦合的那部分动量归入背景部分就将略去不考察,所以才引入准动量方便描述,特别是在讨论响应电磁场的动力学过程,电子在倒格矢空间中也就表现出犹如有动量ћk(同时也具有有效质量m*= ћ²/[∂²E/∂k_i ∂k_j] ),因此称这种简约波矢对应的非真实的动量为“晶格动量”或“准动量”。(具体可见黄昆的固体物理,定性讨论准动量与真实动量的联系)。在电子、声子相互作用散射过程中遵循所谓准动量守恒的:ћk_1 - ћk_2 = ћq + G_n(ћq为声子动量)。