∫2x / 2x*(x^2-1)^2 dx=1/2∫ 1/ x* [1/(x^2-1)^2 d(x^2-1)^2]x^2-
-1/2∫ 1/x d 1/(x^2-1),分部积分:=-1/2*1/x*1/(x^2-1)+
对· [1/2∫1/(x^2-1)d1/x]中的1/x进行换元,令1/x=t,则x^2=1/t^2,
然后,1/2∫t^2/(1-t^2) dt=-1/2∫(t^2-1)/(t^2-1)dt+1/(t^2-1)dt
-1/2t-1/2 ∫[-1/2/(t+1)]+[1/2/(t-1)]dt
-1/2t+1/4ln(t+1)/(t-1)+c=- 1/2* 1/x+1/4ln[(1/x+1)÷ (1/x-1)]+c
加上前面被分部出去的,得:-1/2* 1/x* 1/(x^2-1) - 1/2* 1/x
+1/4 ln[1/x+1)÷(1/x-1)]+c.