首次实验展示微米尺度异质界面中旋转稳定的结构超滑特性
清华新闻网7月31日电 7月30日,清华大学结构超滑研究团队在材料领域国际顶级学术期刊《自然·材料》(Nature Materials)上发表了《微米尺度石墨/六方氮化硼层状异质结中的鲁棒性结构超滑》(Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions)的研究论文,这是该团队在超滑研究领域取得的又一重大进展。
摩擦是人类历史上研究和利用得最久远、最基础、最重要的现象之一,对科学和技术都有十分重要的含义。对科学而言,摩擦尽管听上去简单——两个物体表面之间作相对滑移运动导致的能量消耗,但由于它根源于原子之间的相互作用和断键,是一个以力学原理为主的跨学科、跨尺度、非线性和非保守系统的复杂现象。对技术而言,当今工业化国家依然有高达约1/4能源因摩擦而消耗掉,约80%机械部件失效由于磨损造成;由于摩擦磨损是无法避免的存在,很多关键的技术(从航天器、高铁、计算机存储、到微机电系统等)遇到发展瓶颈;不少美妙的设计,仅能存在于人们的幻想或科幻小说之中。
清华新闻网7月31日电 7月30日,清华大学结构超滑研究团队在材料领域国际顶级学术期刊《自然·材料》(Nature Materials)上发表了《微米尺度石墨/六方氮化硼层状异质结中的鲁棒性结构超滑》(Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions)的研究论文,这是该团队在超滑研究领域取得的又一重大进展。
摩擦是人类历史上研究和利用得最久远、最基础、最重要的现象之一,对科学和技术都有十分重要的含义。对科学而言,摩擦尽管听上去简单——两个物体表面之间作相对滑移运动导致的能量消耗,但由于它根源于原子之间的相互作用和断键,是一个以力学原理为主的跨学科、跨尺度、非线性和非保守系统的复杂现象。对技术而言,当今工业化国家依然有高达约1/4能源因摩擦而消耗掉,约80%机械部件失效由于磨损造成;由于摩擦磨损是无法避免的存在,很多关键的技术(从航天器、高铁、计算机存储、到微机电系统等)遇到发展瓶颈;不少美妙的设计,仅能存在于人们的幻想或科幻小说之中。