列项公式知:
1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)+....+1/(n+98)(n+99)
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+...+1/(n+98)-1/(n+99)
=1/n-1/(n+99)
=99/n(n+99)
根据已知得,n=1,代入公式
99/1x(1+99)=99/100
1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)+....+1/(n+98)(n+99)
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+...+1/(n+98)-1/(n+99)
=1/n-1/(n+99)
=99/n(n+99)
根据已知得,n=1,代入公式
99/1x(1+99)=99/100