在上一篇文章中(🔍锂电池安全分析及预防),我们已经总结了造成锂电池安全的问题,除了通过检测手段有效溯源,去除污染源,通过包覆对电极材料进行表面改性也是提升电池安全性的有效手段。
根据双碳战略的要求,锂离子电池市场已经达到全新高度。统计数据显示,今年 5 月,我国三元锂电池产量 ,占总产量的 36.2%;而磷酸铁锂电池产量高达 8.8GWh,占总产量的 63.6%。虽然《中国制造 2025》提出了动力电池的发展规划:2020 年,单体电池能量密度达到 300Wh/kg;2025 年达到 400Wh/kg。但越来越高的能量密度,意味着更高的安全风险。在三元正极体系层出不穷的安全事故以及补贴下降的大环境背景下,磷酸铁锂低成本、高安全的优势让其成为各大车厂的首选方案。磷酸铁锂虽安全,但舍弃了高能量密度。
安全问题是市场转向磷酸铁锂的重要因素,而伴随安全问题的仍然是遭遇瓶颈的电池材料体系。磷酸铁锂有低能量密度和较差的低温性的缺点,很难实现材料性能的突破。为了开发下一代高能量密度电池,高/中镍三元正极仍然是最有希望达到规划目标的体系。同时,固态电池和硅负极材料的市场化进程将极大的提升系统能量密度,并有效改善电池安全性。由于硅负极拥有更高的理论容量(4200mAh/g),一旦投产将极大的提升电池性能。固态电解质则可有效解决电解液与电极之间接触以及分解的问题,有效提升安全性与稳定性。
在电池循环过程中的安全隐患来自于滥用造成的失效。失效的机理包括:内短路,热失控,过电压等。而即便是通过一系列安全测试的电池,在投入使用时由于滥用等行为,也会造成较大的风险,引起失效甚至自燃爆炸等事故。
降低风险,提升安全性不仅取决于电池系统的管理和用户良好的使用习惯,对于电池原材料的改良也是重要途径。在之前的文章中,我们介绍了 PALD 技术(粉末原子层沉积)对于提升电池性能以及安全的作用(详见🔍:原子层沉积为电池穿上铠甲)。包覆涂层的主要作用是形成一个超薄的保护层,从而隔绝电解液和活性电极材料,降低了副反应发生的机率,进而规避诸如热失控,产气,析锂等安全隐患。ALD 技术的特点使其能实现多种材料(氧化物,氮化物,磷酸盐,三元化合物,有机杂化涂层等)的均匀、致密涂层包覆,且厚度可控,为包覆方案提供了更多的选择。
那么如何兼顾电池安全性与性能呢?快来看看吧。https://mp.weixin.qq.com/s/xvGNrLdRhABMDCsd1DRw6w
根据双碳战略的要求,锂离子电池市场已经达到全新高度。统计数据显示,今年 5 月,我国三元锂电池产量 ,占总产量的 36.2%;而磷酸铁锂电池产量高达 8.8GWh,占总产量的 63.6%。虽然《中国制造 2025》提出了动力电池的发展规划:2020 年,单体电池能量密度达到 300Wh/kg;2025 年达到 400Wh/kg。但越来越高的能量密度,意味着更高的安全风险。在三元正极体系层出不穷的安全事故以及补贴下降的大环境背景下,磷酸铁锂低成本、高安全的优势让其成为各大车厂的首选方案。磷酸铁锂虽安全,但舍弃了高能量密度。
安全问题是市场转向磷酸铁锂的重要因素,而伴随安全问题的仍然是遭遇瓶颈的电池材料体系。磷酸铁锂有低能量密度和较差的低温性的缺点,很难实现材料性能的突破。为了开发下一代高能量密度电池,高/中镍三元正极仍然是最有希望达到规划目标的体系。同时,固态电池和硅负极材料的市场化进程将极大的提升系统能量密度,并有效改善电池安全性。由于硅负极拥有更高的理论容量(4200mAh/g),一旦投产将极大的提升电池性能。固态电解质则可有效解决电解液与电极之间接触以及分解的问题,有效提升安全性与稳定性。
在电池循环过程中的安全隐患来自于滥用造成的失效。失效的机理包括:内短路,热失控,过电压等。而即便是通过一系列安全测试的电池,在投入使用时由于滥用等行为,也会造成较大的风险,引起失效甚至自燃爆炸等事故。
降低风险,提升安全性不仅取决于电池系统的管理和用户良好的使用习惯,对于电池原材料的改良也是重要途径。在之前的文章中,我们介绍了 PALD 技术(粉末原子层沉积)对于提升电池性能以及安全的作用(详见🔍:原子层沉积为电池穿上铠甲)。包覆涂层的主要作用是形成一个超薄的保护层,从而隔绝电解液和活性电极材料,降低了副反应发生的机率,进而规避诸如热失控,产气,析锂等安全隐患。ALD 技术的特点使其能实现多种材料(氧化物,氮化物,磷酸盐,三元化合物,有机杂化涂层等)的均匀、致密涂层包覆,且厚度可控,为包覆方案提供了更多的选择。
那么如何兼顾电池安全性与性能呢?快来看看吧。https://mp.weixin.qq.com/s/xvGNrLdRhABMDCsd1DRw6w