在光学冷加工和镜头装调过程中,精确地测定透镜或镜组中心厚度、空气间隔对产品成像质量至关重要。以往,人们常采用机械法,如卡尺、百分表、千分表等量具来测定透镜的中心厚度和镜组的空气间隔。但机械法是接触测量,有划伤镜片、增加系统的杂散光的风险。且顶点位置找不准,或千分表测头对零件的压力不同会使得测量结果有较大误差,一般测量精度低于10um。因此,不少工业生产需要高精度的非接触式测量方法和仪器,如非接触式测厚仪、镜面定位仪。
目前,光学加工领域最理想的非接触式测量厚度的方案之一,是在迈克尔逊干涉仪基础上设计的一种非接触式测量厚度的方法和仪器,如下图所示的光学干涉法非接触式测厚仪和镜面定位仪等,可以测量各种透明或半透明材料的厚度,具有无损伤、高精度的特点。

迈克尔逊干涉仪原理回顾
迈克尔逊干涉仪是最典型的双光束干涉仪,通过入射光分振幅形成双光束而产生干涉。其结构如图2所示,光源S发出光束,入射到分束板上,分别经反射和透射行程强度相等的光束①和光束②,再经过反射镜M1和 M2反射后即可在观察区域形成干涉图样。

干涉仪等效于M1、M2’虚平板,M2’是M2经分束板反射面所成的虚像。通过调节M1、M2的相对位置,改变虚平板的厚度和楔角,可以实现平行平板的等倾干涉,实现楔板的混合型条纹,并且在楔板角度不大、板厚很小的条件下获得等厚干涉条纹。
非接触式测厚仪原理
非接触式测厚仪多采用短相干光源的迈克尔逊干涉仪原理,图3所示,短相干光源发出的短相干光束经过光纤耦合器可分成两束,两束光分别经透镜聚焦到测量臂(Measurement arm)和参考臂(Reference arm)上;在测量臂中,光束经被测镜组各个透镜表面反射,R1和R2为被测透镜前后表面的反射光信号;在参考臂中,光束经扫描反射镜反射,在光纤耦合器中,分别与R1和R2两束光产生干涉,两干涉信号经光电二极管转换为电信号再由显示器显示。
图3 低相干光干涉测量原理

来自被测镜组不同表面的反射信号具有不同的光程,通过调节扫描反射镜位置改变参考光的光程,当参考反射光与被测镜组某一表面反射光的光程差为零时产生干涉极大值信号,随着光程差的增加,相干信号迅速减小。 根据这一原理,通过调节扫描反射镜在光路上的位置,分别调出两干涉信号出现极大值的两个位置,此两极值的位置所对应的扫描反射镜在参考臂上的位置之差,即为待测镜组的光学厚度,其实际厚度为光学厚度除以其折射率。 系统中采用短相干,以获得足够短的相干长度,当相干长度小于待测镜组的光学厚度的2倍时,才能保证反射光束R1和R2相互不发生干涉,达到隔绝第二个表面对干涉条纹的影响的目的。如采用中心波长λ =1310nm,谱宽∆λ =83nm的发光二极管(SLD)光源,其相干长度lc=2ln2×λ²/(π×∆λ) =9um。
目前,光学加工领域最理想的非接触式测量厚度的方案之一,是在迈克尔逊干涉仪基础上设计的一种非接触式测量厚度的方法和仪器,如下图所示的光学干涉法非接触式测厚仪和镜面定位仪等,可以测量各种透明或半透明材料的厚度,具有无损伤、高精度的特点。

迈克尔逊干涉仪原理回顾
迈克尔逊干涉仪是最典型的双光束干涉仪,通过入射光分振幅形成双光束而产生干涉。其结构如图2所示,光源S发出光束,入射到分束板上,分别经反射和透射行程强度相等的光束①和光束②,再经过反射镜M1和 M2反射后即可在观察区域形成干涉图样。

干涉仪等效于M1、M2’虚平板,M2’是M2经分束板反射面所成的虚像。通过调节M1、M2的相对位置,改变虚平板的厚度和楔角,可以实现平行平板的等倾干涉,实现楔板的混合型条纹,并且在楔板角度不大、板厚很小的条件下获得等厚干涉条纹。
非接触式测厚仪原理
非接触式测厚仪多采用短相干光源的迈克尔逊干涉仪原理,图3所示,短相干光源发出的短相干光束经过光纤耦合器可分成两束,两束光分别经透镜聚焦到测量臂(Measurement arm)和参考臂(Reference arm)上;在测量臂中,光束经被测镜组各个透镜表面反射,R1和R2为被测透镜前后表面的反射光信号;在参考臂中,光束经扫描反射镜反射,在光纤耦合器中,分别与R1和R2两束光产生干涉,两干涉信号经光电二极管转换为电信号再由显示器显示。
图3 低相干光干涉测量原理

来自被测镜组不同表面的反射信号具有不同的光程,通过调节扫描反射镜位置改变参考光的光程,当参考反射光与被测镜组某一表面反射光的光程差为零时产生干涉极大值信号,随着光程差的增加,相干信号迅速减小。 根据这一原理,通过调节扫描反射镜在光路上的位置,分别调出两干涉信号出现极大值的两个位置,此两极值的位置所对应的扫描反射镜在参考臂上的位置之差,即为待测镜组的光学厚度,其实际厚度为光学厚度除以其折射率。 系统中采用短相干,以获得足够短的相干长度,当相干长度小于待测镜组的光学厚度的2倍时,才能保证反射光束R1和R2相互不发生干涉,达到隔绝第二个表面对干涉条纹的影响的目的。如采用中心波长λ =1310nm,谱宽∆λ =83nm的发光二极管(SLD)光源,其相干长度lc=2ln2×λ²/(π×∆λ) =9um。
