求解一元二次方程是最基础和最简单的数学问题,而求解一元三次方程就是比较复杂的数学问题了。意大利数学家帕西奥利(Luca Pacioli,1445年~1514年或1517年)于1494年在威尼斯发表了文艺复兴时期最伟大的数学著作《Summa de arithmetica, geometrica, proportioni et proportionalita》,他在书中记录了对一元三次方程解法的艰辛探索, 并下结论认为在当时的数学,求解一元三次方程是根本不可能的。
帕西奥利曾于1501年至1502年间来到博洛尼亚大学任教,期间与同在博洛尼亚大学的费罗讨论过许多数学问题,人们并不知晓他们是否也曾讨论过一元三次方程问题,但是在帕西奥利离开博洛尼亚后不久,费罗就至少解决了一元三次方程在一种情况下(x3 + mx = n)的解,这在求解一元三次方程的道路上是一个突破性的成功。
然而费罗并没有马上发表自己的成果,而是对解法保密,这很大程度上是因为他拒绝公开交流他的思想,他更愿意与他的朋友和学生交流,而不是将它们写下来出版,因此费罗的手稿并没有流传至今。尽管如此,他曾有过一本笔记簿,记录了他所有的重要发现,其中包括一元三次方程的解法。在他1526年去世后,这本笔记簿由他的女婿Hannival Nave继承了,Nave也是一个数学家,他替代费罗继续在博洛尼亚大学授课。同时被传授这一解法的还有费罗的学生菲奥尔。
一元三次方程解法的进展在费罗去世后充满了戏剧性,先是菲奥尔在得到秘传后吹嘘自己能够解所有的一元三次方程,其实他只会费罗传授他的x3+mx=n,而另一位意大利塔塔利亚(尼科洛·冯塔纳的绰号,意大利语“口吃者”的意思,1499年~1557年12月13日)在1534年宣称自己发现了形如x3+mx2=n的方程的解,两人相约在米兰进行公开比赛。
1535年就在比赛前夕,塔塔利亚苦思冥想出来其他多种形式的一元三次方程解,从而轻而易举地赢得了比赛,并在1541年终于完全解决了一元三次方程的求解问题。与费罗相同的是,塔塔利亚同样选择保守解法的秘密。同样研究一元三次方程的意大利医生、哲学家和数学家卡尔丹在允诺不公开的条件下,1539年从塔塔利亚那里得到了他的解法,在其基础上也发现了所有一元三次方程的解法。
而在1543年,卡尔丹和他的学生费拉里(Ludovico Ferrari,1522年2月2日~1565年10月5日)曾前往博洛尼亚,从费罗的女婿Nave处得知,其实费罗早于塔塔利亚已经发现了一元三次方程的解法,他便摒弃了给塔塔利亚的承诺,将他拓展的解法在1545年的著作《大术》(又译《数学大典》,Ars Magns)中发表,他在书中称,是费罗第一个发现了一元三次方程的解法,而他所给出的解法其实就是费罗的解法。
由于卡尔丹的失信,激怒了塔塔利亚,两人互相在书信中指责对方,并进行公开论战,最终卡尔丹派人秘密刺杀了塔塔利亚。
塔塔利亚消逝了,由于卡尔丹最早发表了求解一元三次方程的方法,因而该解法至今仍被称为“卡尔丹公式”。卡尔丹是第一个把负数写在二次根号内的数学家,并由此引进了虚数的概念,后来经过许多数学家的努力,发展成了负数的理论。从这个意义上,卡尔丹公式对数学的发展作出了巨大贡献,史称卡尔丹公式是伟大的公式。
帕西奥利曾于1501年至1502年间来到博洛尼亚大学任教,期间与同在博洛尼亚大学的费罗讨论过许多数学问题,人们并不知晓他们是否也曾讨论过一元三次方程问题,但是在帕西奥利离开博洛尼亚后不久,费罗就至少解决了一元三次方程在一种情况下(x3 + mx = n)的解,这在求解一元三次方程的道路上是一个突破性的成功。
然而费罗并没有马上发表自己的成果,而是对解法保密,这很大程度上是因为他拒绝公开交流他的思想,他更愿意与他的朋友和学生交流,而不是将它们写下来出版,因此费罗的手稿并没有流传至今。尽管如此,他曾有过一本笔记簿,记录了他所有的重要发现,其中包括一元三次方程的解法。在他1526年去世后,这本笔记簿由他的女婿Hannival Nave继承了,Nave也是一个数学家,他替代费罗继续在博洛尼亚大学授课。同时被传授这一解法的还有费罗的学生菲奥尔。
一元三次方程解法的进展在费罗去世后充满了戏剧性,先是菲奥尔在得到秘传后吹嘘自己能够解所有的一元三次方程,其实他只会费罗传授他的x3+mx=n,而另一位意大利塔塔利亚(尼科洛·冯塔纳的绰号,意大利语“口吃者”的意思,1499年~1557年12月13日)在1534年宣称自己发现了形如x3+mx2=n的方程的解,两人相约在米兰进行公开比赛。
1535年就在比赛前夕,塔塔利亚苦思冥想出来其他多种形式的一元三次方程解,从而轻而易举地赢得了比赛,并在1541年终于完全解决了一元三次方程的求解问题。与费罗相同的是,塔塔利亚同样选择保守解法的秘密。同样研究一元三次方程的意大利医生、哲学家和数学家卡尔丹在允诺不公开的条件下,1539年从塔塔利亚那里得到了他的解法,在其基础上也发现了所有一元三次方程的解法。
而在1543年,卡尔丹和他的学生费拉里(Ludovico Ferrari,1522年2月2日~1565年10月5日)曾前往博洛尼亚,从费罗的女婿Nave处得知,其实费罗早于塔塔利亚已经发现了一元三次方程的解法,他便摒弃了给塔塔利亚的承诺,将他拓展的解法在1545年的著作《大术》(又译《数学大典》,Ars Magns)中发表,他在书中称,是费罗第一个发现了一元三次方程的解法,而他所给出的解法其实就是费罗的解法。
由于卡尔丹的失信,激怒了塔塔利亚,两人互相在书信中指责对方,并进行公开论战,最终卡尔丹派人秘密刺杀了塔塔利亚。
塔塔利亚消逝了,由于卡尔丹最早发表了求解一元三次方程的方法,因而该解法至今仍被称为“卡尔丹公式”。卡尔丹是第一个把负数写在二次根号内的数学家,并由此引进了虚数的概念,后来经过许多数学家的努力,发展成了负数的理论。从这个意义上,卡尔丹公式对数学的发展作出了巨大贡献,史称卡尔丹公式是伟大的公式。