考场上做的:
作AC交圆ABP于K,AB交圆ACQ于J,EX平行AC平行FY. 导角得BCJK共圆,注意角APB=角AKB=角AJC=角AYF,得PBFY共圆,同理QXCE共圆. 注意AX/AK=RM/MB=(导边可得)RN/RC=AY/AJ,故AP·AF=AB·AY=AB·AJ·(AY/AJ)=AB·AJ·(AX/AK)=AC·AK·(AX/AK)=AC·AX=AQ·AE,得PQEF共圆. 于是角PQC=角PQA+角AQC=角AFE+角DAC=角ANB+角BAC=角ANB+角APB=180度-角PBC,证毕.