下面是复制《黎曼猜想获得显著突破》一文中的,一段描述:
简单来说,古斯和梅纳德的新成果,就是证明了狄利克雷多项式取大值的频率的新界限。
狄利克雷级数的大值问题在解析数论中有广泛而重要的应用。比如,黎曼ζ函数就可以表示为一个狄利克雷级数,其非平凡零点的分布,与ζ(s)在临界线附近的大值密切相关。
根据陶哲轩的科普,令N(σ,T)表示实部至少为σ、虚部至多为T的黎曼ζ函数的零点数量。黎曼猜想告诉我们,对于任意σ>1/2,N(σ,T)都是0。
黎曼猜想目前还没办法无条件地证明,次优的选择是证明零点密度估计,也就是对N(σ,T)给出一个非平凡上界。这里σ=3/4是一个关键值。1940年,英厄姆得到了一个界,即:此后的八十年中,数学界一直未能对这个界限有实质性的改进,大部分工作只是对o(1)误差动动脑筋。这就限制住了数学家们对解析数论的探索,比如,受限于英厄姆界,为了在(x,x+x^θ)形式的几乎所有短区间内得到一个好的素数定理,长期以来数学家们只能处理θ>1/6的情况。现在,古斯和梅纳德成功将3/5=0.6提高到了13/25=0.52。还是拿上面这个例子来说,θ的范围就可以从θ>1/6=0.166…提高到θ>2/15=0.133…(黎曼猜想下θ>0)。
。
期待有能力者 诠释、科普其中描述的相关理念。
简单来说,古斯和梅纳德的新成果,就是证明了狄利克雷多项式取大值的频率的新界限。
狄利克雷级数的大值问题在解析数论中有广泛而重要的应用。比如,黎曼ζ函数就可以表示为一个狄利克雷级数,其非平凡零点的分布,与ζ(s)在临界线附近的大值密切相关。
根据陶哲轩的科普,令N(σ,T)表示实部至少为σ、虚部至多为T的黎曼ζ函数的零点数量。黎曼猜想告诉我们,对于任意σ>1/2,N(σ,T)都是0。
黎曼猜想目前还没办法无条件地证明,次优的选择是证明零点密度估计,也就是对N(σ,T)给出一个非平凡上界。这里σ=3/4是一个关键值。1940年,英厄姆得到了一个界,即:此后的八十年中,数学界一直未能对这个界限有实质性的改进,大部分工作只是对o(1)误差动动脑筋。这就限制住了数学家们对解析数论的探索,比如,受限于英厄姆界,为了在(x,x+x^θ)形式的几乎所有短区间内得到一个好的素数定理,长期以来数学家们只能处理θ>1/6的情况。现在,古斯和梅纳德成功将3/5=0.6提高到了13/25=0.52。还是拿上面这个例子来说,θ的范围就可以从θ>1/6=0.166…提高到θ>2/15=0.133…(黎曼猜想下θ>0)。
。
期待有能力者 诠释、科普其中描述的相关理念。