取一条纸带拉平(撕下一页小说制成纸带也不妨),将纸带的一端扭转180度,再将两端粘接起来——这就成了一圈有名的数学模型,「莫比斯环」(Moebius Strip)。
莫比斯环不同於一般的纸环,因为它呈现出一个无尽的空间:一般的纸环有内外两面,内环和外环的长度都是有限的,容易测度出来;然而,莫比斯环的内外环长度却无法测知,因为它的内环的极限就是外环,而外环的极限是内环,两个看似不同的平面就这般融媾合一。莫比斯环乍看之下有两个面,两个面却是同一个,不分内外,没有终结。
从一般的纸环的中央剪开,纸环便会一分为二,两个新纸环的周长和原版纸环一样,整个过程就像细胞分裂。可是莫比斯环就不同了:从它宽度的二分之一处剪开,它不会分成两个,而是膨胀为一个放大的莫比斯环;如果从它宽度的三分之一处剪开,它倒会分成二个,只是大小不一,而且完美地扣合在一起,更是奇怪。因此,莫比斯环不会分化为两圈独立的个体,而只会膨大,或是变成母女般(或母子般,或父子般)相依偎的大小连体。
「无限」的代号为「∞」,长相酷似莫比斯环。
一张纸并非一定要有两面,在莫比斯环里,它只有一面,却寓意着「∞」,恰好是“道生一,一生二,二生三,三生万物”。。
莫比斯环不同於一般的纸环,因为它呈现出一个无尽的空间:一般的纸环有内外两面,内环和外环的长度都是有限的,容易测度出来;然而,莫比斯环的内外环长度却无法测知,因为它的内环的极限就是外环,而外环的极限是内环,两个看似不同的平面就这般融媾合一。莫比斯环乍看之下有两个面,两个面却是同一个,不分内外,没有终结。
从一般的纸环的中央剪开,纸环便会一分为二,两个新纸环的周长和原版纸环一样,整个过程就像细胞分裂。可是莫比斯环就不同了:从它宽度的二分之一处剪开,它不会分成两个,而是膨胀为一个放大的莫比斯环;如果从它宽度的三分之一处剪开,它倒会分成二个,只是大小不一,而且完美地扣合在一起,更是奇怪。因此,莫比斯环不会分化为两圈独立的个体,而只会膨大,或是变成母女般(或母子般,或父子般)相依偎的大小连体。
「无限」的代号为「∞」,长相酷似莫比斯环。
一张纸并非一定要有两面,在莫比斯环里,它只有一面,却寓意着「∞」,恰好是“道生一,一生二,二生三,三生万物”。。