第一部分 赔率篇
五、赔率衍生的几种数理模型。
上文说到了赔率的基本运算,以及对博彩公司的概率模型进行了探究。本部分则主要提供赔率所衍生的几种数理模型,供大家参考。 (一)比赛数据模型的构成。 由于赔率的产生,以及与博彩公司营业性质、赢利性质的挂钩,因此更多的专业人士期望通过客观、理性的方法去分析比赛的进程和结果,抛开主观的思维影响,以数理模型的方式得到答案,以期达到通过赔率最终盈利的目的。经过专业分析人士的不懈努力,各类比赛逐渐形成多种数据模型,在此我们主要介绍三种最主流的数据分析模型。 在西方,成规模的博彩业已经有了200多年的历史,涌现出了许多建立在严格的数学统计基础上竞技比赛结果的预测方法,根据我们掌握的资料,有三种权威的预测方法目前被广泛地应用于预测足球比赛的胜负平结果,有一些专家甚至声称,欧洲几乎所有的博彩公司都在这三种预测方法的基础上建立起数学模型,从而决定本公司在一场足球比赛以前开出怎样的初始赔率。 这三种被广泛应用的权威预测方法是:一、埃罗(ELO)预测法;二、进球率比较预测法;三、最近六场战绩比较预测法。 A、埃罗预测法: 埃罗预测法是美国物理学家Aroad Elo博士创立的,Elo博士最早将这套方法用于预测国际象棋的比赛结果。他在自己的《棋分高下:过去和现在》一书中对该方法作了详细说明,通过对1500场英超比赛的研究,杰奎斯·布莱克对Elo预测法进行了不懈地改进,现已经被广泛应用足球赛事中。Elo预测法的改进模型是通过研究主客场球队在比赛前的积分情况来预测胜负的,Elo预测法的预测回归方程式为:
主场球队取胜的可能性 =44.8%+(0.53%乘以两队积分差)
客场球队的获胜可能性=24.5%+(两队积分差乘以0.39%) 这两个回归方式的得出过程如下:
首先,根据数学专家的研究表明,足球比赛中主客场双方实力的发挥似乎有一个“限度”,如果用埃罗预测法中的双方的分之来表示其实力的话,那么当将主场球队的优势设定为其实力的7%,而将客场球队的优势设定为其实力的5%时,应用埃罗预测法所预测的结果与实际比赛结果最为接近;而“限度”即为7%+5%=12%。 1、比赛限度。
根据德拉普金和弗西斯的研究结果,如果比赛双方的赛前得分均为100分的话,主场球队的优势为7分,而客场球队的优势为5分,而“限度”为7+5=12分;该12分谁赢“赢家通吃”;而如果两队的比赛出现平局,则两队就各得6分。
该方法的具体应用如下(假定两队赛前分值均为100分):
如果主场球队胜,则主场球队在赛后分值调整为105(+100-7+2),而客场球队分值调整为95(=100-5);
如果客场球队获胜,则客场球队的赛后分值调整为107(=100-5+12),而主场球队分值调整为93(=100-7);
如果比赛以平局告终,则主场球队的赛后分之调整为99(=100-7+6),而客场球队赛后分之调整为101(=100-5+6),而客场球队赛后分值调整为101(=100-5+6)。
也就是说,主场球队在赛前的积分超出客场球队越多,主场球队在比赛中取胜的可能性就越大。 2、积分差与主队获胜的关系。
我们根据线型回归的方式,可得知相关系数(R)显示“积分差”与“主队获胜”二者之间的相关性非常显著,相关系数经运算得出为0.42。也就是说,主场球队取胜的原因,有42%可以用主场球队和客场球队在赛前的积分差来解释。当然,主场球队取胜的原因仍然有58%需要用积分差之外的其他因素来解释。尽管如此,对1,500多场比赛(用统计学的术语来说,就是1500多个样本)进行分析,得出的0.42相关系数无论如何都表明相关性是极其显著的。
通过回归方程,还可以找出二者之间具体的数量关系,即y=0.0053x+0.448,其中,x为主客场队之间的积分差,y主场球队取胜的可能性。 3、积分差与客队获胜的关系。
和上面所说相同,赛前的积分差与客场球队获胜的可能性之间的相关系数(R)为0.45,表明两者之间显著相关。也就是说,客场球队取胜的原因有45%可以用比赛双方的赛前积分差来解释,其回归方程为(y=-0.0039x+0.2452) 上述分析表明,如果参赛双方的积分相同,客场球队取胜的可能性为24.5%;如果参赛双方积分不同,那么客场球队的积分比主场球队的积分每高一分,客场球队获胜的可能性就增加0.39%;而主场球队的赛前积分比客场球队的积分每高一分,客场球队获胜的可能性即下降0.39%,由此,我们得出了开篇时的两个预测回归方程式。 4、积分差与平局之间的关系。 埃罗积分能够得出主客胜的关系,那是否能得出平局的关系呢?经过研究,引人注目的是参赛双方的积分差与出现平局的可能性之间没有显著的相关关系。不论采用线性回归的方式,还是采用非线性回归的方式,都无法得出二者的显著相关的结论。线性回归的相关系数(R)为0.048,而采用非线性回归方式相关系数(R)也仅为0.079,从统计学上来说,这样的相关系数是没有意义的。因此,无法判断出积分差与平局出现的可能性之间的关系。虽然这里无法找出出现平局的可能性与参赛球队赛前积分差之间的关系,但这至少告诉我们,平局是随机分布并且和很难预测的。 那么博彩公司是怎么控制平局赔率所产生的赔付的呢?这个问题我们将在后文“盈亏指数”部分做专题研究。 5、埃罗概率与赔率模型概率的区别。
看了上文后,可能有朋友会说,埃罗数据得出的百分比概率是否就等同于赔率模型概率呢?这里我们要澄清一点:埃罗概率是一种静态的概率,与赔率模型概率是有显著的不同的。正如前文所说,“主场球队取胜的原因,有42%可以用主场球队和客场球队在赛前的积分差来解释。当然,主场球队取胜的原因仍然有58%需要用积分差之外的其他因素来解释。”埃罗概率显然不包含这58%的因素,而博彩公司的赔率模型概率则完全包含了这58%的因素,两者有着本质的区别。 但是,我们可以通过将埃罗概率与赔率模型概率相互对比引证,来发现博彩公司对某场比赛的看法。这种对比方法,笔者(秦俑)曾专门著有相关文章,有兴趣的朋友可以学习阅读,来提升自己对足球比赛的判断能力。