∫ (x-1)/(x^2+2x+11) dx
=(1/2)∫ (2x+2)/(x^2+2x+11) dx - 2∫ dx/(x^2+2x+11)
=(1/2)ln|x^2+2x+11| -2∫ dx/[(x+1)^2+10]
=(1/2)ln|x^2+2x+11| -(1/5)∫ dx/{ 1+[(x+1)/√10]^2 }
=(1/2)ln|x^2+2x+11| -(√10/5)arctan[(x+1)/√10] + C
=(1/2)∫ (2x+2)/(x^2+2x+11) dx - 2∫ dx/(x^2+2x+11)
=(1/2)ln|x^2+2x+11| -2∫ dx/[(x+1)^2+10]
=(1/2)ln|x^2+2x+11| -(1/5)∫ dx/{ 1+[(x+1)/√10]^2 }
=(1/2)ln|x^2+2x+11| -(√10/5)arctan[(x+1)/√10] + C