钴酸锂造就高电压电池古迪纳夫对惠廷汉姆革命性的电池早有耳闻,彼时这一电池使用的还是金属硫化物正极,古迪纳夫的专业知识让他想到,使用金属氧化物代替金属硫化物,能够提高正极电势。很快,古迪纳夫及其团队着手寻找一种在嵌入锂离子时能够提供高电压,且脱出锂时结构不塌陷的金属氧化物正极材料。
这种电池体系的成功远超古迪纳夫的想象。惠廷汉姆的电池能产生超过 2V 的电压,而古迪纳夫发现,以钴酸锂为正极的电池体系能产生两倍于惠廷汉姆的电池的电压,为 4V。
古迪纳夫成功的关键在于他认识到,电池材料不需要在制备之初就处于满电状态,而是可以在制备之后进行充电。1980 年,他发表了这项研究,使用这种质量轻,能量密度高的新型正极材料,可以研制出高容量电池。这是迈向无线通讯中至关重要的一步。
古迪纳夫开始在锂电池的正极中使用钴酸锂。这几乎使电池的电压增加了一倍,使其能量密度更高
随着石油价格的下跌,西方国家对新能源技术和电动汽车的投资减少。然而,日本的一些公司正迫切地需要轻薄的可充电电池,这种电池可以为摄像机、无线电话、计算机等新型电子设备供电。旭化成公司的吉野彰敏锐地捕捉到了这个需求。或正如他所说:“我只是闻到了在不断变化的形势,你可以说我有很好的嗅觉。”
吉野彰决定用古迪纳夫的钴酸锂作正极,并尝试各种碳基材料作负极,研制一种实用的可充电电池。研究人员在此之前发现,锂离子能够插入石墨的分子层中,但与此同时,石墨的结构会被电解质破坏。然而吉野彰别出心裁地使用了石油工业的副产物——石油焦——成功解决了这一问题。锂离子在充电时嵌入石油焦负极,当电池放电时,锂离子能够迁移到钴酸锂正极,这种电池具有更高的电压。
吉野彰研制的电池稳定、轻便、高容量,且能够产生 4V 的电压。锂离子电池的最大优点在于锂离子能够嵌入电极中。大多数电池充放电时发生的化学反应会使其电极发生缓慢的变化。而锂离子电池充放电时,锂离子在电极之间来回迁移而不和周围物质发生反应。这意味着锂离子电池寿命很长,可以进行数百次的充放电。
吉野彰研制了首款可商用的锂离子电池。他在正极上使用了古迪纳夫的钴酸锂,而在负极上,他使用了一种碳材料——石油焦,它也可以嵌入锂离子。电池没有基于任何有害的化学反应。相反,锂离子在电极之间来回迁移,这使得电池具有较长的使用寿命。
锂离子电池的另一个优点,在于锂离子电池不含金属锂。1986年,吉野彰小心翼翼地用爆炸测试装置来进行电池的安全性测试。他在电池上放了一大块铁,但什么也没发生。可是用负极是金属锂的电池重复这个实验时,发生了剧烈爆炸。
成功通过安全性测试对锂离子电池的未来至关重要。吉野彰说,这是“锂离子电池诞生的时刻”。
1991 年,日本一家大型的电子公司开始销售第一款锂离子电池,引发了电子设备的革命。手机、计算机轻便化,MP3、平板电脑等电子设备也应运而生。
随后,世界各地的研究人员遍历元素周期表中的元素,以期研制出更好的电池,但还没有任何一款电池能在高容量和高电压方面超过锂离子电池。当然,锂离子电池体系也在不断经历演变和改进,这其中就包括古迪纳夫使用磷酸铁锂替代钴酸锂等,从而使得锂离子电池更加环保。
锂离子电池的生产对环境有影响,但也有巨大的环境效益。锂离子电池推动了清洁能源技术和电动汽车的发展,从而有助于减少温室气体和细颗粒物的排放。
由此,古迪纳夫、惠廷汉姆和吉野彰的工作为无线通讯和无化石燃料的社会创造了适当的条件,为人类发展做出了巨大的贡献。